Representing Cells (AQA A Level Chemistry)

Revision Note

Test Yourself
Stewart

Author

Stewart

Expertise

Chemistry Lead

Representing Cells

  • Electrochemical cells generate electricity from spontaneous redox reactions
  • For example:

Zn (s)  + CuSO4 (aq)→ Cu (s)  + ZnSO4 (aq)

    • Instead of electrons being transferred directly from the zinc to the copper ions, a cell is built which separates the two redox processes
    • For example:

Zn (s)  ⇌  Zn2+ (aq) + 2e– 

  • If a rod of metal is dipped into a solution of its own ions, an equilibrium is set up
  • Each part of the cell is called a half cell

Zinc metal electrode potential, downloadable IB Chemistry revision notes

When a metal is dipped into a solution containing its ions an equilibrium is established between the metal and its ions. This is the basis of a half cell in an electrochemical cell.

  • This is a half cell and the strip of metal is an electrode
  • The position of the equilibrium determines the potential difference between the metal strip and the solution of metal
  • The Zn atoms on the rod can deposit two electrons on the rod and move into solution as Zn2+ ions:

Zn(s) ⇌ Zn2+(aq) + 2e– 

  • This process would result in an accumulation of negative charge on the zinc rod
  • Alternatively, the Zn2+ ions in solution could accept two electrons from the rod and move onto the rod to become Zn atoms:

Zn2+(aq) + 2e–  ⇌ Zn(s)

  • This process would result in an accumulation of positive charge on the zinc rod
  • In both cases, a potential difference is set up between the rod and the solution
  • This is known as an electrode potential
  • A similar electrode potential is set up if a copper rod is immersed in a solution containing copper ions (e.g. CuSO4), due to the following processes:

Cu2+(aq) + 2e–  ⇌ Cu(s)   – reduction (rod becomes positive)

Cu(s) ⇌ Cu2+(aq) + 2e–    – oxidation (rod becomes negative)

Principles of Electrochemistry - Oxidation of Copper, downloadable AS & A Level Chemistry revision notes

Oxidation of copper atoms

Principles of Electrochemistry - Reduction of Copper, downloadable AS & A Level Chemistry revision notes

Reduction of copper(II) ions

  • Note that a chemical reaction is not taking place – there is simply a potential difference between the rod and the solution
  • The potential difference will depend on
    • the nature of the ions in solution
    • the concentration of the ions in solution
    • the type of electrode used
    • the temperature

Electrode potential

  • The electrode (reduction) potential (E) is a value which shows how easily a substance is reduced
  • These are demonstrated using reversible half equations
    • This is because there is a redox equilibrium between two related species that are in different oxidation states

  • When writing half equations for this topic, the electrons will always be written on the left-hand side (demonstrating reduction)
  • The position of equilibrium is different for different species, which is why different species will have different electrode (reduction) potentials
  • The more positive (or less negative) an electrode potential, the more likely it is for that species to undergo reduction
    • The equilibrium position lies more to the right

  • For example, the positive electrode potential of bromine below, suggests that it is likely to get reduced and form bromide (Br-) ions

Br2(l) + 2e- ⇌ 2Br-(aq)        E = +1.09 V

  • The more negative (or less positive) the electrode potential, the less likely it is that reduction of that species will occur
    • The equilibrium position lies more to the left

  • For example, the negative electrode potential of sodium suggests that it is unlikely that the sodium (Na+) ions will be reduced to sodium (Na) atoms

Na+(aq) + e- ⇌ Na(s)        E = -2.71 V

Conventional Representation of Cells

  • Chemists use a type of shorthand convention to represent electrochemical cells
  • In this convention:
    • A solid vertical (or slanted) line shows a phase boundary, that is an interface between a solid and a solution
    • A double vertical line (sometimes shown as dashed vertical lines) represents a salt bridge
      • A salt bridge has mobile ions that complete the circuit
      • Potassium chloride and potassium nitrate are commonly used to make the salt bridge as chlorides and nitrates are usually soluble
      • This should ensure that no precipitates form which can affect the equilibrium position of the half cells

    • The substance with the highest oxidation state in each half cell is drawn next to the salt bridge
    • The cell potential difference is shown with the polarity of the right hand electrode

  • The cell convention for the zinc and copper cell would be

Zn (s)∣Zn2+ (aq) ∥Cu2+ (aq)∣Cu (s)                  E cell = +1.10 V

  • This tells us the copper half cell is more positive than the zinc half cell, so that electrons would flow from the zinc to the copper
  • The same cell can be written as:

Cu (s)∣Cu2+ (aq) ∥Zn2+ (aq)∣Zn (s)                  E cell = -1.10 V

  • The polarity of the right hand half cell is negative, so we can still tell that electrons flow from the zinc to the copper half cell

Worked example

Writing a cell diagram

If you connect an aluminium electrode to a zinc electrode, the voltmeter reads 0.94V and the aluminium is the negative. Write the conventional cell diagram to the reaction.

Answer

Al (s)∣Al3+ (aq) ∥ Zn2+ (aq)∣Zn (s)                  E cell = +0.94 V

It is also acceptable to include phase boundaries on the outside of cells as well:

∣ Al (s)∣Al3+ (aq) ∥ Zn2+ (aq)∣Zn (s) ∣                  E cell = +0.94 V

Exam Tip

Students often confuse the redox processes that take place in electrochemical cells.

  • Oxidation takes place at the negative electrode.
  • Reduction takes place at the positive electrode.

Remember, oxidation is the loss of electrons, so you are losing electrons at the negative.

∣ Al (s)∣Al3+ (aq) ∥Zn2+ (aq)∣Zn (s) ∣                  E cell = +0.94 V

You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Stewart

Author: Stewart

Stewart has been an enthusiastic GCSE, IGCSE, A Level and IB teacher for more than 30 years in the UK as well as overseas, and has also been an examiner for IB and A Level. As a long-standing Head of Science, Stewart brings a wealth of experience to creating Topic Questions and revision materials for Save My Exams. Stewart specialises in Chemistry, but has also taught Physics and Environmental Systems and Societies.

Join over 500 thousand students
getting better grades