Syllabus Edition

First teaching 2023

First exams 2025

|

Angular Velocity (HL IB Physics)

Revision Note

Test Yourself
Ashika

Author

Ashika

Expertise

Physics Project Lead

Angular Velocity

Motion in a Straight Line

  • When an object moves in a straight line at a constant speed its motion can be described as follows:
    • The object moves at a constant velocity, v
    • Constant velocity means zero acceleration, a
    • Newton's First Law of motion says the object will continue to travel in a straight line at a constant speed unless acted on by another force
    • Newton's Second Law of motion says that for zero acceleration there is no net or resultant force

  • For example, an ice hockey puck moving across a flat frictionless ice rink

6-1-1-moving-puck-no-net-force_sl-physics-rn

An ice puck moving in a straight line

Motion in a Circle

  • If one end of a string was attached to the puck, and the other attached to a fixed point, it would no longer travel in a straight line, it would begin to travel in a circle

6-1-1-motion-in-a-circle_sl-physics-rn

The red arrows represent the velocity vectors of the puck. If the string were cut, the puck would move off in the direction shown by the red vector, as predicted by Newton’s first law.

  • The motion of the puck can now be described as follows:
    • As the puck moves it stretches the string a little to a length r
    • The stretched string applies a force to the puck pulling it so that it moves in a circle of radius r around the fixed point

  • The force acts at 90° to the velocity so there is no force component in the direction of velocity
    • As a result, the magnitude of the velocity is constant
    • However, the direction of the velocity changes

  • As it starts to move in a circle the tension of the string continues to pull the puck at 90° to the velocity
    • The speed does not change, hence, this is called uniform circular motion

6-1-1-puck-with-net-force_sl-physics-rn

The applied force (tension) from the string causes the puck to move with uniform circular motion

Time Period & Frequency

  • If the circle has a radius r, then the distance through which the puck moves as it completes one rotation is equal to the circumference of the circle = 2πr

  • The speed of the puck is therefore equal to:

s p e e d space space equals fraction numerator space d i s t a n c e space t r a v e l l e d over denominator t i m e space t a k e n end fraction space equals space fraction numerator 2 πr over denominator T end fraction

  • Where:
    • r = the radius of the circle (m)
    • T = the time period (s)

  • This is the same as the time period in waves and simple harmonic motion (SHM)
  • The frequency, f, can be determined from the equation:

f space equals space 1 over T

  • Where:
    • f = frequency (Hz)
    • T = the time period (s)

Angles in Radians

  • A radian (rad) is defined as:

The angle subtended at the centre of a circle by an arc equal in length to the radius of the circle

6-1-1-one-radian_sl-physics-rn

When the angle is equal to one radian, the length of the arc (S) is equal to the radius (r) of the circle

  • Radians are commonly written in terms of π
  • The angle in radians for a complete circle (360°) is equal to:

 

fraction numerator c i r c u m f e r e n c e space o f space c i r c l e over denominator r a d i u s end fraction space equals space fraction numerator 2 straight pi straight r space over denominator r end fraction space equals space 2 straight pi

  • Use the following equation to convert from degrees to radians:

 

theta degree space cross times space fraction numerator straight pi space over denominator 180 end fraction space equals space theta space rad 

Table of common degrees to radians conversionsTable of common degrees to radians conversions, downloadable AS & A Level Physics revision notes

Angular Displacement

  • In circular motion, it is more convenient to measure angular displacement in units of radians rather than units of degrees
  • Angular displacement is defined as:

The change in angle, in radians, of a body as it rotates around a circle

  • Where:
    • Δθ = angular displacement, or angle of rotation (radians)
    • S = length of the arc, or the distance travelled around the circle (m)
    • r = radius of the circle (m)

6-1-1-angle-in-radians_sl-physics-rn

An angle in radians, subtended at the centre of a circle, is the arc length divided by the radius of the circle

Angular Velocity

  • Any object rotating with a uniform circular motion has a constant speed but constantly changing velocity
  • Its velocity is changing so it is accelerating
    • But at the same time, it is moving at a constant speed

  • The angular speed, ⍵, of a body in circular motion is defined as:

The rate of change in angular displacement with respect to time

  • Angular speed is a scalar quantity and is measured in rad s–1

 

  • The angular speed does not depend on the length of the line AB
  • The line AB will sweep out an angle of 2π rad in a time T

6-1-1-angular-speed-diagram_sl-physics-rn

The angular speed is ω is the rate at which the line AB rotates

Angular Velocity & Linear Speed

  • Angular velocity is a vector quantity and is measured in rad s–1
  • Angular speed is the magnitude of the angular velocity
  • Although the angular speed doesn’t depend on the radius of the circle, the linear speed does

 

6-1-1-linear-and-angular-speed_sl-physics-rn

The angle Δθ is swept out in a time Δt, but the arc lengths s and S are different and so are the linear speeds

  • The linear speed, v, is related to the angular speed, ⍵, by the equation:

v space equals space r omega

  • Where:
    • v = linear speed (m s–1)
    • r = radius of circle (m)
    • ⍵ = angular speed (rad s–1)

  • Taking the angular displacement of a complete cycle as 2π, the angular speed ⍵ can be calculated using the equation:

omega space equals space 2 πf space equals fraction numerator space 2 straight pi over denominator straight T end fraction

  • Therefore, the linear velocity can also be written as:

v space equals space fraction numerator 2 πr over denominator T end fraction

Worked example

Convert the following angular displacement into degrees:WE - Radians conversion question image, downloadable AS & A Level Physics revision notes

WE - Radians conversion answer image, downloadable AS & A Level Physics revision notes

Worked example

A bird flies in a horizontal circle with an angular speed of 5.25 rad s−1 of radius 650 m.

Calculate:

(a)
The linear speed of the bird

(b)
The frequency of the bird flying in a complete circle

WE - Angular speed answer image, downloadable AS & A Level Physics revision notes

Exam Tip

Remember the units of angular velocity as rad s–1, so any angles used in calculations must be in radians and not degrees!

is the time period which is the time taken for one full revolution.

You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Ashika

Author: Ashika

Ashika graduated with a first-class Physics degree from Manchester University and, having worked as a software engineer, focused on Physics education, creating engaging content to help students across all levels. Now an experienced GCSE and A Level Physics and Maths tutor, Ashika helps to grow and improve our Physics resources.