Syllabus Edition

First teaching 2023

First exams 2025

|

Hall Voltage (CIE A Level Physics)

Revision Note

Test Yourself
Ashika

Author

Ashika

Expertise

Physics Project Lead

Hall Voltage

  • The Hall voltage is a product of the Hall effect
  • Hall voltage is defined as:

The potential difference produced across an electrical conductor when an external magnetic field is applied perpendicular to the current through the conductor

  • When an external magnetic field is applied perpendicular to the direction of current through a conductor, the electrons experience a magnetic force
  • This makes them drift to one side of the conductor, where they all gather and becomes more negatively charged
  • This leaves the opposite side deficient of electrons, or positively charged
  • There is now a potential difference across the conductor
    • This is called the Hall Voltage, VH

Hall voltage 

Hall Voltage, downloadable AS & A Level Physics revision notes

The positive and negative charges drift to opposite ends of the conductor producing a hall voltage when a magnetic field is applied

  • An equation for the Hall voltage VH is derived from the electric and magnetic forces on the charges

Electric and magnetic forces creating the Hall voltage

Hall voltage derivation diagram, downloadable AS & A Level Physics revision notes

The electric and magnetic forces on the electrons are equal and opposite

  • The voltage arises from the electrons accumulating on one side of the conductor slice
  • As a result, an electric field is set up between the two opposite sides
  • The two sides can be treated like oppositely charged parallel plates, where the electric field strength E is equal to:

E space equals space fraction numerator V subscript H space over denominator d end fraction

  • Where:
    • VH = Hall voltage (V)
    • d = width of the conductor slice (m)

  • A single electron has a drift velocity of v within the conductor. The magnetic field is into the plane of the page, therefore the electron has a magnetic force FB to the right:

F subscript B space equals space B q v

  • This is equal to the electric force FE to the left:

F subscript E space equals space q E

q E thin space equals space B q v

  • Substituting E and cancelling the charge q

V subscript H over d space equals space B v

  • Recall that current I is related to the drift velocity v by the equation:

I space equals space n A v q

  • Where:
    • A = cross-sectional area of the conductor (m2)
    • n = number density of electrons (m-3)

  • Rearranging this for v and substituting it into the equation gives:

VHd = BI nAq{"language":"en","fontFamily":"Times New Roman","fontSize":"18","autoformat":true}

  • The cross-sectional area A of the slice is the product of the width d and thickness t:

A = dt{"language":"en","fontFamily":"Times New Roman","fontSize":"18","autoformat":true}

  • Substituting A and rearranging for the Hall voltage VH leads to the equation:

VHd =BIIdtq{"language":"en","fontFamily":"Times New Roman","fontSize":"18","autoformat":true}

VH = BIntq{"language":"en","fontFamily":"Times New Roman","fontSize":"18","autoformat":true} 

  • Where:
    • B = magnetic flux density (T)
    • q = charge of the electron (C)
    • I = current (A)
    • n = number density of electrons (m-3)
    • t = thickness of the conductor (m)

  • This equation shows that the smaller the electron density n of a material, the larger the magnitude of the Hall voltage
    • This is why a semiconducting material is often used for a Hall probe

  • Note: if the electrons were placed by positive charge carriers, the negative and positive charges would still deflect in opposite directions
    • This means there would be no change in the polarity (direction) of the Hall voltage

Exam Tip

Remember to use Fleming’s left-hand rule to obtain the direction the electrons move due to the magnetic force created by the magnetic field.

You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Ashika

Author: Ashika

Ashika graduated with a first-class Physics degree from Manchester University and, having worked as a software engineer, focused on Physics education, creating engaging content to help students across all levels. Now an experienced GCSE and A Level Physics and Maths tutor, Ashika helps to grow and improve our Physics resources.