Transverse & Longitudinal Waves (Cambridge O Level Physics)

Revision Note

Test Yourself
Dan MG

Author

Dan MG

Expertise

Physics

Transverse Waves

  • Waves are repeated vibrations that transfer energy

  • Waves can exist as one of two types:
    • Transverse
    • Longitudinal

Transverse Waves

  • Transverse waves are defined as:

Waves where the points along its length vibrate at 90 degrees to the direction of energy transfer

  • For a transverse wave:
    • The energy transfer is in the same direction as the wave motion
    • They transfer energy, but not the particles of the medium
    • They can move in solids and on the surfaces of liquids but not inside liquids or gases
    • Some transverse waves (electromagnetic waves) can move in solids, liquids and gases and in a vacuum

  • The point on the wave that is:
    • The highest above the rest position is called the peak, or crest
    • The lowest below the rest position is called the trough

Vibrations of a Transverse Wave

Transverse waves can be seen in a rope when it is moved quickly up and down

  • Examples of transverse waves are:
    • Ripples on the surface of water
    • Vibrations on a guitar string
    • S-waves (a type of seismic wave)
    • Electromagnetic waves (such as radio, light, X-rays etc)

Representing Transverse Waves

  • Transverse waves are drawn as a single continuous line, usually with a central line showing the undisturbed position
  • The curves are drawn so that they are perpendicular to the direction of energy transfer
    • These represent the peaks and troughs

Transverse Wave Graph

Transverse wave diagram, downloadable AS & A Level Physics revision notes

Transverse waves are represented as a continuous solid line

Longitudinal Waves

  • Longitudinal waves are defined as:

Waves where the points along its length vibrate parallel to the direction of energy transfer

  • For a longitudinal wave:
    • The energy transfer is in the same direction as the wave motion
    • They transfer energy, but not the particles of the medium
    • They can move in solids, liquids and gases
    • They can not move in a vacuum (since there are no particles)

  • The key features of a longitudinal wave are where the points are:
    • Close together, called compressions
    • Spaced apart, called rarefactions

Longitudinal Wave on a Spring

Longitudinal Wave Vibration Spring, downloadable IGCSE & GCSE Physics revision notes

Longitudinal waves can be seen in a slinky spring when it is moved quickly backwards and forwards

  • Examples of longitudinal waves are:
    • Sound waves
    • P-waves (a type of seismic wave)
    • Pressure waves caused by repeated movements in a liquid or gas

Representing Longitudinal Waves

  • Longitudinal waves are usually drawn as several lines to show that the wave is moving parallel to the direction of energy transfer
    • Drawing the lines closer together represents the compressions
    • Drawing the lines further apart represents the rarefactions

Diagram of a Longitudinal Wave

Longitudinal wave diagram, downloadable AS & A Level Physics revision notes

Longitudinal waves are represented as sets of lines with rarefactions and compressions

Comparing Transverse & Longitudinal Waves

  • The different properties of transverse and longitudinal waves are shown in the table:

Transverse Waves v Longitudinal Waves Table

Property Transverse Waves Longitudinal Waves
Structure Peaks and troughs Compressions and rarefactions
Vibration 90° to direction of energy transfer Parallel to direction of energy transfer
Vacuum Electromagnetic waves (a transverse wave) can travel through a vacuum Cannot travel in a vacuum
Material Can move in solids, liquids and gases Can move in solids, liquids and gases
Density Constant density Changes in density
Pressure Constant pressure Changes in pressure
Speed of wave Dependent on the material it travels in Dependent on the material it travels in

 

Exam Tip

The key difference between transverse and longitudinal waves is the direction of the vibrations with respect to the direction of the wave itself. For transverse waves, these are perpendicular to each other, whilst for longitudinal waves, these are parallel.

You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Dan MG

Author: Dan MG

Dan graduated with a First-class Masters degree in Physics at Durham University, specialising in cell membrane biophysics. After being awarded an Institute of Physics Teacher Training Scholarship, Dan taught physics in secondary schools in the North of England before moving to SME. Here, he carries on his passion for writing enjoyable physics questions and helping young people to love physics.