Introduction to Complex Numbers (Edexcel International A Level Further Maths)

Revision Note

Mark Curtis

Written by: Mark Curtis

Reviewed by: Dan Finlay

Updated on

Cartesian Form of Complex Numbers

What is an imaginary number?

  • Equations like x to the power of 2 space end exponent equals space minus 9 have no real solutions

    • Squaring real numbers always gives a positive value

      • No real number squared could give -9

    • x equals plus-or-minus 3 are real numbers, but neither work

      • They give +9

  • To get round this, mathematicians introduce the imaginary number, straight i, as follows:

    • straight i squared equals negative 1

      • This can be thought of as straight i equals square root of negative 1 end root

  • Rules for surds and indices can be used

    • x to the power of 2 space end exponent equals space minus 9 means x to the power of 2 space end exponent equals space 9 cross times open parentheses negative 1 close parentheses equals 9 straight i squared

      • The imaginary solutions are x equals plus-or-minus 3 straight i

What is a complex number?

  • Complex numbers have both a real part and an imaginary part

    • For example, 3 plus 4 straight i

      • The real part is 3

      • The imaginary part is 4

  • This is called Cartesian form

  • In general, Cartesian form is written using the notation:

    • z equals x plus y straight i

    • Re open parentheses z close parentheses equals x

    • Im open parentheses z close parentheses equals y

  • The letter straight complex numbers stands for all complex numbers

    • z element of straight complex numbers

  • Complex numbers with no imaginary parts are real numbers

    • The real numbers, straight real numbers, are a subset of the complex numbers, straight complex numbers

      • straight real numbers subset of straight complex numbers

  • In Cartesian form z equals x plus y straight i space element of straight complex numbers

    • x element of straight real numbers

    • y element of straight real numbers as y itself takes real values

      • Multiplying it by straight i makes it imaginary: y straight i

  • Complex numbers with no real parts are called imaginary numbers

How do I add or subtract complex numbers?

  • Add or subtract their real parts and imaginary parts separately

    • table row cell left parenthesis 3 plus 4 straight i right parenthesis plus open parentheses 2 plus 8 straight i close parentheses end cell equals cell open parentheses 3 plus 2 close parentheses plus open parentheses 4 plus 8 close parentheses straight i equals 5 plus 12 straight i end cell end table

    • table row cell left parenthesis 3 plus 4 straight i right parenthesis minus open parentheses 2 plus 8 straight i close parentheses end cell equals cell open parentheses 3 minus 2 close parentheses plus open parentheses 4 minus 8 close parentheses straight i equals 1 minus 4 straight i end cell end table

How do I multiply or divide complex numbers by real numbers?

  • Multiply or divide their real parts and imaginary parts separately

    • table row cell 10 left parenthesis 3 plus 4 straight i right parenthesis end cell equals cell 30 plus 40 straight i end cell end table

    • table row cell left parenthesis 3 plus 4 straight i right parenthesis divided by 10 end cell equals cell 0.3 plus 0.4 straight i end cell end table

      • This can also be written table row cell 1 over 10 open parentheses 3 plus 4 straight i close parentheses end cell equals cell 3 over 10 plus 4 over 10 straight i end cell end table

Examiner Tips and Tricks

  • Avoid these handwriting misinterpretations when writing straight i in the exam:

    • 2 square root of 5 straight i can look like 2 square root of 5 straight i end root

      • Alternatives are open parentheses 2 square root of 5 close parentheses straight i or 2 straight i square root of 5

    • 3 over 2 straight i can look like fraction numerator 3 over denominator 2 straight i end fraction

      • An alternative is fraction numerator 3 straight i over denominator 2 end fraction

Worked Example

Two complex numbers are given by z subscript 1 equals p plus 2 straight i and z subscript 2 equals negative 7 plus q straight i, where p and q are real.

Given that z subscript 1 plus 2 z subscript 2 equals 4 minus 8 straight i, find p and q.

Substitute the complex numbers into the left-hand side

open parentheses p plus 2 straight i close parentheses plus 2 open parentheses negative 7 plus q straight i close parentheses

Expand the brackets and collect real and imaginary terms

table row blank equals cell p plus 2 straight i minus 14 plus 2 q straight i end cell row blank equals cell open parentheses straight p minus 14 close parentheses plus open parentheses 2 plus 2 q close parentheses straight i end cell end table

Compare this to the right-hand side
Set the real parts equal to each other and solve

table row cell p minus 14 end cell equals 4 row p equals 18 end table

Set the imaginary parts equal to each other and solve

table row cell 2 plus 2 q end cell equals cell negative 8 end cell row cell 2 q end cell equals cell negative 10 end cell row q equals cell negative 5 end cell end table

p equals 18 and q equals negative 5

Multiplying Complex Numbers

How do I multiply complex numbers?

  • All rules of expanding brackets still work

    • You need to remember that straight i squared equals negative 1

  • For example, open parentheses a plus b straight i close parentheses open parentheses c plus d straight i close parentheses equals a c plus a d straight i plus b c straight i plus b d straight i squared

    • Use straight i squared equals negative 1 in the last term

      • a c plus a d straight i plus b c straight i minus b d

    • Then group real and imaginary parts

      • Factorise out the straight i

      • a c minus b d plus open parentheses a d plus b c close parentheses straight i

  • Note that the difference between two squares becomes

    • open parentheses a plus b straight i close parentheses open parentheses a minus b straight i close parentheses equals a squared minus b squared straight i squared equals a squared plus b squared

How do I find powers of i?

  • Use the fact that straight i squared equals negative 1

    • Below are the first few powers of straight i:

      • straight i to the power of 0 equals 1

      • straight i to the power of 1 equals straight i

      • straight i squared equals negative 1

      • straight i cubed equals negative straight i from straight i squared cross times straight i equals open parentheses negative 1 close parentheses cross times straight i

      • straight i to the power of 4 equals 1 from left parenthesis straight i squared right parenthesis squared equals open parentheses negative 1 close parentheses squared equals 1

      • straight i to the power of 5 equals straight i from straight i to the power of 5 equals left parenthesis straight i squared right parenthesis squared blank cross times straight i equals straight i

    • The pattern above continues

      • straight i to the power of 6 equals negative 1

      • straight i to the power of 7 equals negative straight i

  • Find higher powers of straight i using a base of straight i squared

    • Remember that -1 to an even power is 1 (or to an odd power is -1)

      • straight i to the power of 23 equals open parentheses straight i squared close parentheses to the power of 11 cross times straight i equals open parentheses negative 1 close parentheses to the power of 11 cross times straight i equals blank minus straight i

Examiner Tips and Tricks

Questions that say "show your working clearly" won't accept answers written down from a calculator.

Worked Example

Showing your working clearly, find and simplify:

(a) open parentheses 4 plus straight i close parentheses open parentheses 2 plus 9 straight i close parentheses

Expand the brackets

equals 4 cross times 2 plus 4 cross times 9 straight i plus straight i cross times 2 plus straight i cross times 9 straight i
equals 8 plus 36 straight i plus 2 straight i plus 9 straight i squared

Collect the imaginary parts
Use that