Solving Equations with Complex Roots (Edexcel International A Level Further Maths)

Revision Note

Mark Curtis

Written by: Mark Curtis

Reviewed by: Dan Finlay

Updated on

Quadratics with Complex Roots

How do I solve a quadratic with complex roots?

  • Quadratic equations with complex roots can still be solved using the quadratic formula or by completing the square

    • They have the form a z squared plus b z plus c equals 0 where a, b and c are real numbers

    • For complex roots, the discriminant is negative

      • b squared minus 4 a c less than 0

    • You must therefore rewrite the square root using straight i

      • square root of negative 16 end root equals 4 straight i, square root of negative 2 end root equals straight i square root of 2, ... and so on

  • The two roots, z subscript 1 and z subscript 2 are complex conjugates of each other

    • (provided a, b and c from the equation are all real numbers)

    • So z subscript 1 equals x plus straight i y and z subscript 2 equals x minus straight i y

      • z subscript 2 equals z subscript 1 asterisk times

Examiner Tips and Tricks

Complex conjugate roots is a key concept that is used in many exam questions.

How do I solve a quadratic with one known complex root?

  • If you know one complex root, the other will be its complex conjugate

    • If z subscript 1 equals 4 plus 5 straight i is a root to z squared minus 8 z plus 41 equals 0

      • then z subscript 2 equals 4 minus 5 straight i must be the other root

      • No solving is required!

How do I find a quadratic from its complex root?

  • If you are given one complex root, z subscript 1, the other root is its complex conjugate, z subscript 1 asterisk times

  • You can then write its quadratic equation in factorised form

    • open parentheses z minus z subscript 1 close parentheses open parentheses z minus z subscript 1 asterisk times close parentheses equals 0

    • Expand this to give the equation in expanded form a z squared plus b z plus c equals 0

      • Any multiple of this equation also works

  • A good trick when expanding is to group the first two terms in each bracket

    • So open parentheses straight z minus open parentheses 2 plus 3 straight i close parentheses close parentheses open parentheses straight z minus open parentheses 2 minus 3 straight i close parentheses close parentheses becomes open parentheses open parentheses z minus 2 close parentheses minus 3 straight i close parentheses open parentheses open parentheses z minus 2 close parentheses plus 3 straight i close parentheses

    • Then use the difference of two squares

      • open parentheses z minus 2 close parentheses squared minus open parentheses 3 straight i close parentheses squared identical to open parentheses z minus 2 close parentheses squared plus 9 identical to z squared minus 4 z plus 4 plus 9

    • The equation is therefore z squared minus 4 z plus 13 equals 0

Examiner Tips and Tricks

Always check how the question wants the answer, for example asking for integer coefficients.

Worked Example

(a) Solve z squared minus 2 z plus 37 equals 0.

Use the quadratic formula with a equals 1, b equals negative 2 and c equals 37
Find the discriminant b squared minus 4 a c

table row cell b squared minus 4 a c end cell equals cell open parentheses negative 2 close parentheses squared minus 4 cross times 1 cross times 37 end cell row blank equals cell 4 minus 148 end cell row blank equals cell negative 144 end cell end table

Substitute these values into the quadratic formula fraction numerator negative b plus-or-minus square root of b squared minus 4 a c end root over denominator 2 a end fraction

table row z equals cell fraction numerator negative open parentheses negative 2 close parentheses plus-or-minus square root of negative 144 end root over denominator 2 cross times 1 end fraction end cell row blank equals cell fraction numerator 2 plus-or-minus square root of negative 144 end root over denominator 2 end fraction end cell end table

Use that square root of negative 144 end root equals square root of 144 straight i squared end root equals 12 straight i

z equals fraction numerator 2 plus-or-minus 12 straight i over denominator 2 end fraction

Simplify the answers
Check that they are complex conjugates of each other

z equals 1 plus-or-minus 6 straight i

(b) If negative 1 half plus fraction numerator 3 straight i over denominator 2 end fraction is one root of the equation a z squared plus b z plus c equals 0 where a, b and c are positive integers, find a, b and c .

Write down the other root (the complex conjugate)

negative 1 half minus fraction numerator 3 straight i over denominator 2 end fraction

Write down the quadratic equation in factorised form, open parentheses z minus z subscript 1 close parentheses open parentheses z minus z subscript 1 asterisk times close parentheses equals 0

open parentheses z minus open parentheses negative 1 half plus fraction numerator 3 straight i over denominator 2 end fraction close parentheses close parentheses open parentheses z minus open parentheses negative 1 half minus fraction numerator 3 straight i over denominator 2 end fraction close parentheses close parentheses equals 0

Expand inside each bracket

open parentheses z plus 1 half minus fraction numerator 3 straight i over denominator 2 end fraction close parentheses open parentheses z plus 1 half plus fraction numerator 3 straight i over denominator 2 end fraction close parentheses equals 0

Group the first two terms in each bracket

open parentheses open parentheses z plus 1 half close parentheses minus fraction numerator 3 straight i over denominator 2 end fraction close parentheses open parentheses open parentheses z plus 1 half close parentheses plus fraction numerator 3 straight i over denominator 2 end fraction close parentheses equals 0

Use the difference of two squares to expand

open parentheses z plus 1 half close parentheses squared minus open parentheses fraction numerator 3 straight i over denominator 2 end fraction close parentheses squared equals 0

Expand and collect, using straight i squared equals negative 1

table row cell z squared plus z plus 1 fourth plus 9 over 4 end cell equals 0 row cell z squared plus z plus 5 over 2 end cell equals 0 end table

The question wants the final answer to have positive integer coefficients
Multiply both sides of the equation by 2

2 z squared plus 2 z plus 5 equals 0

Write down the values of a, b and c

a equals 2, b equals 2 and c equals 5

Positive integer multiples of these answers are also accepted

Cubics & Quartics with Complex Roots

How do I solve a cubic with complex roots?

  • Cubic equations have either

    • 3 real roots

    • or 1 real root and one complex conjugate pair of roots

  • Solve a z cubed plus b z squared plus c z plus d equals 0, given that m plus n straight i is a root

    • Another root is m minus n straight i

      • Its complex conjugate

    • So left parenthesis z minus open parentheses m plus n straight i close parentheses right parenthesis and left parenthesis z minus left parenthesis m minus n i right parenthesis right parenthesis are factors

    • Multiply the factors together to get a quadratic factor

      • left parenthesis A z squared plus B z plus C right parenthesis

    • You need to find the remaining linear factor left parenthesis P z plus Q right parenthesis

    • Either use equating coefficients to find alpha

      • open parentheses A z squared plus B z plus C close parentheses open parentheses P z plus Q close parentheses identical to a x cubed plus b x squared plus c x plus d

      • Expand and simplify the left-hand side

      • Match each coeffi