Inverse Functions (AQA GCSE Maths) : Revision Note

Naomi C

Author

Naomi C

Last updated

Did this video help you?

Inverse Functions

What is an inverse function?

  • An inverse function does the opposite (reverse) operation of the function it came from

    • E.g. If a function “doubles the number then adds 1”

    • Then its inverse function “subtracts 1, then halves the result”

      • The same inverse operations are used when solving an equation or rearranging a formula

  • An inverse function performs the inverse operations in the reverse order

What notation is used for inverse functions?

  • The inverse function of straight f open parentheses x close parentheses is written as space straight f to the power of negative 1 end exponent left parenthesis x right parenthesis equals horizontal ellipsis space space

    • For example, if straight f left parenthesis x right parenthesis equals 2 x plus 1

    • The inverse function is straight f to the power of negative 1 end exponent left parenthesis x right parenthesis equals fraction numerator x minus 1 over denominator 2 end fraction  or straight f to the power of negative 1 end exponent colon space x rightwards arrow from bar fraction numerator x minus 1 over denominator 2 end fraction

  • If straight f open parentheses a close parentheses equals b then straight f to the power of negative 1 end exponent open parentheses b close parentheses equals a

    • For example

      • straight f open parentheses 3 close parentheses equals 2 cross times 3 plus 1 equals 7 (inputting 3 into straight f gives 7)

      • straight f to the power of negative 1 end exponent open parentheses 7 close parentheses equals fraction numerator 7 minus 1 over denominator 2 end fraction equals 3 (inputting 7 into straight f to the power of negative 1 end exponent gives back 3)

How do I find an inverse function algebraically?

  • The process for finding an inverse function is as follows:

    • Write the function as bold italic y bold equals bold. bold. bold.

      • E.g. The function straight f left parenthesis x right parenthesis equals 2 x plus 1 becomes y equals 2 x plus 1

    • Swap the xs and ys to get x equals horizontal ellipsis

      • E.g. x equals 2 y plus 1

      • The letters change but no terms move

    • Rearrange the expression to make bold italic y the subject again

      • E.g. x equals 2 y plus 1 becomes x minus 1 equals 2 y so y equals fraction numerator x minus 1 over denominator 2 end fraction

    • Replace bold italic y with space straight f to the power of negative 1 end exponent left parenthesis x right parenthesis equals horizontal ellipsis space space(or straight f to the power of negative 1 end exponent colon space x rightwards arrow from bar horizontal ellipsis)

      • E.g. straight f to the power of negative 1 end exponent open parentheses x close parentheses equals fraction numerator x minus 1 over denominator 2 end fraction

      • This is the inverse function

      • y should not appear in the final answer

  • The composite function of straight f followed by straight f to the power of negative 1 end exponent (or the other way round) cancels out

    • ff to the power of negative 1 end exponent open parentheses x close parentheses equals straight f to the power of negative 1 end exponent straight f open parentheses x close parentheses equals x

      • If you apply a function to x, then apply its inverse function, you get back x

      • Whatever happened to x gets undone

      • f and f-1 cancel each other out when applied together

  • For example, solve straight f to the power of negative 1 end exponent open parentheses x close parentheses equals 5 where straight f open parentheses x close parentheses equals 2 to the power of x

    • Finding the inverse function straight f to the power of negative 1 end exponent open parentheses x close parentheses algebraically in this case is tricky

      • (It is impossible if you haven't studied logarithms!)

    • Instead, you can take straight f of both sides of straight f to the power of negative 1 end exponent open parentheses x close parentheses equals 5 and use the fact that ff to the power of negative 1 end exponent cancel each other out:

      • table row cell ff to the power of negative 1 end exponent open parentheses x close parentheses end cell equals cell straight f open parentheses 5 close parentheses end cell end table which cancels to x equals straight f open parentheses 5 close parentheses giving x equals 2 to the power of 5 equals 32

Worked Example

A function is given by straight f open parentheses x close parentheses equals 5 minus 3 x. Use algebra to find straight f to the power of negative 1 end exponent open parentheses x close parentheses.

Write the function in the form y equals 5 minus 3 x and then swap the x and y

y equals 5 minus 3 x
x equals 5 minus 3 y

Rearrange the expression to make y the subject again

table row x equals cell 5 minus 3 y end cell row cell space x plus 3 y end cell equals 5 row cell 3 y end cell equals cell 5 minus x end cell row y equals cell fraction numerator 5 minus x over denominator 3 end fraction end cell end table

Rewrite the answer using inverse function notation

Error converting from MathML to accessible text.

👀 You've read 1 of your 5 free revision notes this week
An illustration of students holding their exam resultsUnlock more revision notes. It's free!

By signing up you agree to our Terms and Privacy Policy.

Already have an account? Log in

Did this page help you?

Naomi C

Author: Naomi C

Expertise: Maths Content Creator

Naomi graduated from Durham University in 2007 with a Masters degree in Civil Engineering. She has taught Mathematics in the UK, Malaysia and Switzerland covering GCSE, IGCSE, A-Level and IB. She particularly enjoys applying Mathematics to real life and endeavours to bring creativity to the content she creates.

Download notes on Inverse Functions