Derivatives & Graphs (DP IB Analysis & Approaches (AA)) : Revision Note

Paul

Author

Paul

Last updated

Did this video help you?

Derivatives & Graphs

How are derivatives and graphs connected?

  • If the graph of a functionspace y equals f left parenthesis x right parenthesis is known, or can be sketched, then it is also possible to sketch the graphs of the derivativesspace y equals f apostrophe left parenthesis x right parenthesis andspace y equals f apostrophe apostrophe left parenthesis x right parenthesis

  • The key properties of a graph include

    • thebold space bold italic y-axis intercept

    • thebold space bold italic x-axis intercepts – the roots of the function; wherespace f left parenthesis x right parenthesis equals 0

    • stationary points; wherespace f apostrophe left parenthesis x right parenthesis equals 0

      • turning points – (local) minimum and maximum points

      • (horizontal) points of inflection

    • (non-stationary,space straight f apostrophe left parenthesis x right parenthesis not equal to 0) points of inflection

    • asymptotesvertical and horizontal

    • intervals where the graph is increasing and decreasing

    • intervals where the graph is concave down and concave up

  • Not all graphs have all of these properties and not all can be determined without knowing the expression of the function

  • However questions will provide enough information to sketch

    • the shape of the graph

    • some of the key properties such as roots or turning points

How do I sketch the graph of y = f'(x) from the graph of y = f(x)?

  • The graph ofspace y equals f apostrophe left parenthesis x right parenthesis will have its

    • space x-axis intercepts at thespace x-coordinates of the stationary points ofspace y equals f left parenthesis x right parenthesis

    • turning points at thespace x-coordinates of the  points of inflection ofspace y equals f left parenthesis x right parenthesis

  • For intervals wherespace y equals f left parenthesis x right parenthesis is concave up,space y equals f apostrophe left parenthesis x right parenthesis will be increasing

  • For intervals wherespace y equals f left parenthesis x right parenthesis is concave down ,space y equals f apostrophe left parenthesis x right parenthesis will be decreasing

  • For intervals wherespace y equals f left parenthesis x right parenthesis is increasing,space y equals f apostrophe left parenthesis x right parenthesis will be positive

  • For intervals wherespace y equals f left parenthesis x right parenthesis is decreasing,space y equals f apostrophe left parenthesis x right parenthesis will be negative

How do I sketch the graph of y = f''(x) from the graph of y = f(x)?

  • First sketch the graph ofspace y equals f apostrophe left parenthesis x right parenthesis fromspace y equals f left parenthesis x right parenthesis, as per the above process

  • Then, using the same process, sketch the graph ofspace y equals f apostrophe apostrophe left parenthesis x right parenthesis from the graph ofspace y equals f apostrophe left parenthesis x right parenthesis

  • There are a couple of things you can deduce about the graph ofspace y equals f apostrophe apostrophe left parenthesis x right parenthesis directly from the graph ofspace y equals f left parenthesis x right parenthesis

    • The graph of space y equals f apostrophe apostrophe left parenthesis x right parenthesis will have its x-axis intercepts at the x-coordinates of the points of inflection of space y equals f left parenthesis x right parenthesis

    • For intervals wherespace y equals f left parenthesis x right parenthesis is concave up,space y equals f apostrophe apostrophe left parenthesis x right parenthesis will be positive

    • For intervals wherespace y equals f left parenthesis x right parenthesis is concave down,space y equals f apostrophe apostrophe left parenthesis x right parenthesis will be negative

5-2-6-ib-sl-aa-only-y-dy-d2y

Is it possible to sketch the graph of y = f(x) from the graph of a derivative?

  • It is possible to sketch a graph ofspace y equals f left parenthesis x right parenthesis by considering the reverse of the above

    • For intervals wherespace y equals f apostrophe left parenthesis x right parenthesis is positive,space y equals f left parenthesis x right parenthesis will be increasing but is not necessarily positive

    • For intervals wherespace y equals f apostrophe left parenthesis x right parenthesis is negative,space y equals f left parenthesis x right parenthesis will be decreasing but is not necessarily negative

    • Roots ofspace y equals f apostrophe left parenthesis x right parenthesis give thespace x-coordinates of the stationary points ofspace y equals f left parenthesis x right parenthesis

  • There are some properties of the graph ofspace y equals f left parenthesis x right parenthesis that cannot be determined from the graph ofspace y equals f apostrophe left parenthesis x right parenthesis

    • thebold space bold italic y-axis intercept

    • the intervals for whichspace y equals f left parenthesis x right parenthesis is positive and negative

    • the roots ofspace y equals f left parenthesis x right parenthesis

  • Unless a specific point the curve passes through is known, the constant of integration cannot be determined

    • the exact location of the curve will remain unknown

    • but it will still be possible to sketch its shape

  • If starting from the graph of the second derivative,space y equals f apostrophe apostrophe left parenthesis x right parenthesis, it is easier to sketch the graph ofspace y equals f apostrophe left parenthesis x right parenthesis first, then sketchspace y equals f left parenthesis x right parenthesis

Worked Example

The graph ofspace y equals f left parenthesis x right parenthesis is shown in the diagram below.

qwwD1Cx~_5-2-6-ib-sl-aa-only-we-quest

On separate diagrams sketch the graphs ofspace y equals f apostrophe left parenthesis x right parenthesis andspace y equals f apostrophe apostrophe left parenthesis x right parenthesis, labelling any roots and turning points.

5-2-6-ib-sl-aa-only-we-soltn
👀 You've read 1 of your 5 free revision notes this week
An illustration of students holding their exam resultsUnlock more revision notes. It's free!

By signing up you agree to our Terms and Privacy Policy.

Already have an account? Log in

Did this page help you?

Paul

Author: Paul

Expertise: Maths Content Creator (Previous)

Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams.

Download notes on Derivatives & Graphs