Angle in a Semicircle (OCR GCSE Maths): Revision Note

Exam code: J560

Amber

Written by: Amber

Reviewed by: Dan Finlay

Updated on

Did this video help you?

Angle in a Semicircle

Circle Theorem: The angle in a semicircle is 90°

  • The lines drawn from a point on the circumference to either end of a diameter are perpendicular

    • The angle at that point on the circumference is 90°

    • This circle theorem only uses half of the circle

      • The right-angle is called the angle in a semicircle

  • This is a special case of the circle theorem "the angle at the centre is twice the angle at the circumference"

    • The angle on the diameter is 180°

    • The angle at the circumference is halved, giving 90°

Right angle in a semicicrcle, IGCSE & GCSE Maths revision notes
  • To spot this circle theorem on a diagram look for a triangle where

    • one side is the diameter

      • Remember that a diameter always goes through the centre

    • all three vertices are on the circumference

  • The 90º angle will always be the angle opposite the diameter

  • When explaining this theorem in an exam you must use the keywords: 

    • The angle in a semicircle is 90° 

  • Questions that use this theorem may

    • appear in whole circles or in semicircles

    • require the use of Pythagoras' Theorem to find a missing length

Worked Example

A circle with points P, Q and R on the circumference. The points are joined to form a triangle inside the circle. The angle PQR is 40º and the angle PRQ is yº.

P, Q and R are points on a circle.
RQ is a diameter.

Find the value of y.

Give a reason for your answer.

Use the fact that angles in a triangle add up to 180º and the circle theorem

The angle in a semicircle is 90°

Write an equation for y

y plus 90 plus 40 equals 180

Solve for y

y equals 180 space minus space 90 space minus space 40
y equals 50

bold italic y bold equals bold 50

The angle in a semicircle is 90°

👀 You've read 1 of your 5 free revision notes this week
An illustration of students holding their exam resultsUnlock more revision notes. It's free!

By signing up you agree to our Terms and Privacy Policy.

Already have an account? Log in

Did this page help you?

Amber

Author: Amber

Expertise: Maths Content Creator

Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.

Dan Finlay

Reviewer: Dan Finlay

Expertise: Maths Subject Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.

Download notes on Angle in a Semicircle