Differentiating Special Functions (DP IB Applications & Interpretation (AI)) : Revision Note

Did this video help you?

Differentiating Trig Functions

How do I differentiate sin, cos and tan?

  • The derivative ofspace bold italic y equals bold sin space bold italic x isspace fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction equals bold cos space bold italic x   

  • The derivative ofbold space bold italic y equals bold cos space bold italic x isspace fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction equals negative bold sin space bold italic x

  • The derivative ofbold space bold italic y bold equals bold tan bold space bold italic x isbold space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals fraction numerator bold 1 over denominator bold cos to the power of bold 2 bold space bold italic x end fraction

    • This result can be derived using quotient rule

  • All three of these derivatives are given in the formula booklet

  • For the linear functionbold space bold italic a bold italic x bold plus bold italic b, where bold italic a and bold italic b are constants,

    • the derivative ofbold space bold italic y bold equals bold sin bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis isspace fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold italic a bold cos bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis 

    • the derivative ofbold space bold italic y bold equals bold cos bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis isbold space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold minus bold italic a bold sin bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis

    • the derivative ofbold space bold italic y bold equals bold tan bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis isbold space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals fraction numerator bold italic a over denominator bold cos to the power of bold 2 bold space bold left parenthesis bold italic a bold italic x bold italic plus bold italic b bold right parenthesis end fraction

  • For the general functionbold space bold italic f bold left parenthesis bold italic x bold right parenthesis,

    • the derivative ofbold space bold italic y equals bold sin stretchy left parenthesis bold italic f left parenthesis bold italic x right parenthesis stretchy right parenthesis isbold space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold italic f to the power of bold apostrophe bold left parenthesis bold italic x bold right parenthesis bold cos stretchy left parenthesis bold italic f open parentheses x close parentheses stretchy right parenthesis

    • the derivative ofbold space bold italic y equals bold cos stretchy left parenthesis bold italic f left parenthesis bold italic x right parenthesis stretchy right parenthesis isbold space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold minus bold italic f bold apostrophe bold left parenthesis bold italic x bold right parenthesis bold sin stretchy left parenthesis bold italic f left parenthesis x right parenthesis stretchy right parenthesis

    • the derivative ofbold space bold italic y bold equals bold tan bold left parenthesis bold italic f bold left parenthesis bold italic x bold right parenthesis bold right parenthesis isbold space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals fraction numerator bold italic f bold apostrophe bold left parenthesis bold italic x bold right parenthesis over denominator bold cos to the power of bold 2 bold space bold left parenthesis bold italic f bold left parenthesis bold italic x bold right parenthesis bold right parenthesis end fraction

  • These last three results can be derived using the chain rule

  • For calculus with trigonometric functions angles must be measured in radians

    • Ensure you know how to change the angle mode on your GDC

Examiner Tips and Tricks

  • As soon as you see a question involving differentiation and trigonometry put your GDC into radians mode

Worked Example

a) Find space f apostrophe left parenthesis x right parenthesis for the functions

 

  1. space f left parenthesis x right parenthesis equals sin space x

  2. space f left parenthesis x right parenthesis equals cos left parenthesis 5 x plus 1 right parenthesis

5-2-1-ib-hl-ai-aa-extraaa-we1a-soltn

b)       A curve has equationspace y equals tan space stretchy left parenthesis 6 x squared minus straight pi over 4 stretchy right parenthesis space.

Find the gradient of the tangent to the curve at the point where x equals fraction numerator square root of straight pi over denominator 2 end fraction.

Give your answer as an exact value.

5-2-1-ib-hl-ai-aa-extraaa-ai-we1b-soltn

Did this video help you?

Differentiating e^x & lnx

How do I differentiate exponentials and logarithms?

  • The derivative of bold space bold italic y bold equals bold e to the power of bold italic x is bold space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold e to the power of bold italic x where x element of straight real numbers

  • The derivative of bold space bold italic y bold equals bold ln bold space bold italic x is bold space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold 1 over bold italic x where space x greater than 0

  • For the linear function bold space bold italic a bold italic x bold plus bold italic b, where a and b are constants,

    • the derivative of bold space bold italic y bold equals bold e to the power of bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis end exponent is text bold end text fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold italic a bold e to the power of bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis end exponent

    • the derivative of bold space bold italic y equals bold ln stretchy left parenthesis bold italic a bold italic x plus bold italic b stretchy right parenthesis is Error converting from MathML to accessible text.

      • in the special case space b equals 0bold space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold 1 over bold italic x     (a's cancel)

  • For the general function bold space bold f bold left parenthesis bold italic x bold right parenthesis,

    • the derivative of  is 

    • the derivative of  is 

  • The last two sets of results can be derived using the chain rule

Examiner Tips and Tricks

  • Remember to avoid the common mistakes:

    • the derivative ofspace ln space k x with respect to x isspace 1 over x, NOTspace k over x

    • the derivative of straight e to the power of k x end exponent with respect to x is k straight e to the power of k x end exponent, NOT k x straight e to the power of k x minus 1 end exponent

Worked Example

A curve has the equationsize 16px space size 16px y size 16px equals size 16px e to the power of size 16px minus size 16px 3 size 16px x size 16px plus size 16px 1 end exponent size 16px plus size 16px 2 size 16px ln size 16px space size 16px 5 size 16px x.

Find the gradient of the curve at the point wherespace x equals 2 gving your answer in the form y equals a plus b e to the power of c, where a comma space b and c are integers to be found.

5-2-1-ib-sl-aa-only-we2-soltn
👀 You've read 1 of your 5 free revision notes this week
An illustration of students holding their exam resultsUnlock more revision notes. It's free!

By signing up you agree to our Terms and Privacy Policy.

Already have an account? Log in

Did this page help you?

Paul

Author: Paul

Expertise: Maths Content Creator (Previous)

Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams.

Download notes on Differentiating Special Functions