Differentiating Special Functions (Cambridge (CIE) IGCSE Additional Maths): Revision Note

Exam code: 606

Amber

Author

Amber

Last updated

Differentiating Trig Functions

How do I differentiate trig functions?

  • For calculus with trigonometric functions, angles must be measured in radians

  • The derivative of space bold italic y equals bold sin space bold italic x is space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction equals bold cos space bold italic x   

  • The derivative of bold space bold italic y equals bold cos space bold italic x is space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction equals negative bold sin space bold italic x

  • The derivative of bold italic y bold equals bold tan bold space bold italic x is fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction equals bold sec to the power of bold 2 space bold italic x

  • The following two sets of relationships can be derived using the chain rule, but are useful to know!

  • For the linear functionbold space bold italic a bold italic x bold plus bold italic b, where bold italic a and bold italic b are constants,

    • the derivative of  bold space bold italic y bold equals bold sin bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis is space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold italic a bold cos bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis 

    • the derivative of bold space bold italic y bold equals bold cos bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis is bold space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold minus bold italic a bold sin bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis

    • the derivative of bold space bold italic y bold equals bold tan bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis is fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold italic a bold sec to the power of bold 2 bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis

  • For the general function space bold f bold left parenthesis bold italic x bold right parenthesis,

    • the derivative of bold space bold italic y equals bold sin stretchy left parenthesis bold f left parenthesis bold italic x right parenthesis stretchy right parenthesis is Error converting from MathML to accessible text.

    • the derivative of bold space bold italic y equals bold cos stretchy left parenthesis bold f left parenthesis bold italic x right parenthesis stretchy right parenthesis is space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction equals negative bold f to the power of bold apostrophe left parenthesis bold italic x right parenthesis bold sin stretchy left parenthesis bold f left parenthesis bold italic x right parenthesis stretchy right parenthesis

    • the derivative of bold space bold italic y bold equals bold tan stretchy left parenthesis f left parenthesis bold italic x right parenthesis stretchy right parenthesis is space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction equals bold f to the power of bold apostrophe bold left parenthesis bold italic x bold right parenthesis sec squared stretchy left parenthesis f left parenthesis bold italic x right parenthesis stretchy right parenthesis

Examiner Tips and Tricks

  • Remember that these rules only work in radians!

Worked Example

a) Find italic space straight f apostrophe left parenthesis x right parenthesis for the functions

i. space straight f left parenthesis x right parenthesis equals sin space x

ii.space straight f left parenthesis x right parenthesis equals cos space 2 x

ii.space straight f left parenthesis x right parenthesis equals 3 sin space 4 x minus cos left parenthesis 2 x minus 3 right parenthesis

i.

ii.    Use the chain rule or remember that when y equals cos open parentheses a x plus b close parentheses, then fraction numerator straight d y over denominator straight d x end fraction equals negative a sin open parentheses a x plus b close parentheses

iii.   Differentiate 'term by term'

straight f apostrophe open parentheses x close parentheses equals 3 open parentheses 4 cos 4 x close parentheses minus open parentheses negative 2 sin open parentheses 2 x minus 3 close parentheses close parentheses

Error converting from MathML to accessible text.

b)table row blank row blank end table Find the gradient of the tangent to the curve space y equals sin space stretchy left parenthesis 2 x plus straight pi over 6 stretchy right parenthesis space at the point where x equals straight pi over 8.

Gradient of tangent is equal to gradient of curve. To find the gradient, differentiate...

fraction numerator straight d y over denominator straight d x end fraction equals 2 cos open parentheses 2 x plus pi over 6 close parentheses

... and substitute x equals pi over 8 into the derivative

fraction numerator straight d y over denominator straight d x end fraction equals 2 cos open parentheses 2 open parentheses pi over 8 close parentheses plus pi over 6 close parentheses

Ensure that your calculator is in radians

equals fraction numerator square root of 6 minus square root of 2 over denominator 2 end fraction equals 0.517638090...

Answer = fraction numerator square root of bold 6 bold minus square root of bold 2 over denominator bold 2 end fraction, or 0.518 to 3 significant figures

 

Differentiating e^x & lnx

How do I differentiate exponentials and logarithms?

  • The derivative of bold space bold italic y bold equals bold e to the power of bold italic x is bold space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold e to the power of bold italic x where x element of straight real numbers

  • The derivative of bold space bold italic y bold equals bold ln bold space bold italic x is bold space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold 1 over bold italic x where space x greater than 0

  • In addition, the results below can all be found using the chain rule but are worthwhile knowing, to save time in an exam

  • For the linear function bold space bold italic a bold italic x bold plus bold italic b, where a and b are constants,

    • the derivative of bold space bold italic y bold equals bold e to the power of bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis end exponent is text bold end text fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold italic a bold e to the power of bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis end exponent

    • the derivative of bold space bold italic y equals bold ln stretchy left parenthesis bold italic a bold italic x plus bold italic b stretchy right parenthesis is space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction equals fraction numerator bold italic a over denominator stretchy left parenthesis bold italic a bold italic x plus bold italic b stretchy right parenthesis end fraction

      • in the special case space b equals 0bold space fraction numerator bold d bold italic y over denominator bold d bold italic x end fraction bold equals bold 1 over bold italic x     (a's cancel)

  • For the general function bold space bold f bold left parenthesis bold italic x bold right parenthesis,

    • the derivative of  is 

    • the derivative of Error converting from MathML to accessible text. is 

Examiner Tips and Tricks

  • Remember to avoid the common mistakes:

    • the derivative ofspace ln space k x with respect to x isspace 1 over x, NOTspace k over x !

    • the derivative of straight e to the power of k x end exponent with respect to x is k straight e to the power of k x end exponent, NOT k x straight e to the power of k x minus 1 end exponent!

Worked Example

A curve has the equation space y equals straight e to the power of negative 3 x end exponent plus 2 ln space x.

Find the gradient of the curve at the point where space x equals 2 giving your answer in the form a plus b e to the power of c, where a comma space b and c are integers to be found.

Differentiate each term separately. 

fraction numerator straight d y over denominator straight d x end fraction equals negative 3 straight e to the power of negative 3 x end exponent space plus space 2 open parentheses 1 over x close parentheses

Substitute x space equals space 2 into the derivative.

fraction numerator straight d y over denominator straight d x end fraction equals negative 3 straight e to the power of negative 3 open parentheses 2 close parentheses end exponent space plus space 2 open parentheses 1 half close parentheses 

Rearrange to the required form.

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative 3 straight e to the power of negative 6 end exponent space plus space 1 space equals space 1 space minus space 3 straight e to the power of negative 6 end exponent end cell end table

Do not use your calculator to evaluate this as the question asks for the answer given in this form.

bold 1 bold space bold minus bold space bold 3 bold e to the power of bold minus bold 6 bold space end exponent

👀 You've read 1 of your 5 free revision notes this week
An illustration of students holding their exam resultsUnlock more revision notes. It's free!

By signing up you agree to our Terms and Privacy Policy.

Already have an account? Log in

Did this page help you?

Amber

Author: Amber

Expertise: Maths Content Creator

Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.

Download notes on Differentiating Special Functions