Slope & Area of Motion Graphs (Edexcel International A Level Physics)

Revision Note

Test Yourself
Lindsay Gilmour



Slope & Area of Motion Graphs

Slope & Area of Motion Graphs

  • Three types of graph that are used to represent motion are displacement-time graphs, velocity-time graphs and acceleration-time graphs

  • To interpret these find either the slope or the area 

  • Slope is found using s l o p e italic space italic equals italic space fraction numerator c h a n g e italic space i n italic space y over denominator c h a n g e italic space i n italic space x end fraction, which can be related to any similar algebraic relationship, for example, v space equals space d over t
    • The slope of a distance-time graph will equal velocity

  • Area is found using area = change in y × change in x, which can be related to any similar algebraic relationship, for example, velocity  × time = distance
    • The area under a velocity-time graph will equal distance

Finding Slope of a Straight Line

  • The slope of a line is found using the formula:

slope =fraction numerator r i s e over denominator r u n end fraction

  • This is also written:

slope = fraction numerator i n c r e a s e space i n space y over denominator i n c r e a s e space i n space x end fraction

  • To find the slope;
    • Identify two points as far apart as possible which intercept with the grid of the graph paper


    • The points must be on the line itself, not the furthest apart plots
    • Clearly mark the points chosen
    • Find the co-ordinates of the two points
    • Calculate to find the slope

fraction numerator i n c r e a s e space i n space y over denominator i n c r e a s e space i n space x end fraction space equals space fraction numerator left parenthesis 26 space minus space 8.5 right parenthesis over denominator left parenthesis 6.6 space minus space 1.0 right parenthesis end fraction = 3.125


  • Use the values on the axes of the graph (or in the data) to identify the correct significant figures
  • Use the units to find the correct units, which also equal 

units of slope = fraction numerator u n i t s space o f space y over denominator u n i t s space o f space x end fraction

  • On this graph all values are to 2 significant figures, 
  • Therefore slope = 3.1 m s−1

Finding the Area Under the Line

  • The area underneath a line represents the x axis multiplied by the y axis.
  • For example, if velocity is plotted on the y-axis and time is on the x-axis, then
    • area = velocity × time = distance
  • When the area is a rectangle or a triangle it is easy to find by calculating

area of rectangle = base × height

area of a triangle = ½ base × height


To find the area under a straight-line graph treat is as any rectangle or triangle

  • When the line is curved, area is found though the following steps
    • Divide the shape into rectangles and triangles as shown
    • Find the area for each by calculating
    • Count the remaining squares
    • Add the totals together


Find area under a curve by dividing it into sections which reduce the number of squares to be counted to the minimum

Motion Graphs, downloadable AS & A Level Physics revision notes

Non-uniform Acceleration

  • In certain cases, acceleration changes throughout a period of motion
  • An example of this is a skydiver falling due to their weight, against air resistance
    • As speed increases, air resistance increases 
    • The increasing resultant force against the direction of motion acts to reduce acceleration
    • Eventually the weight and air resistance balance and acceleration become zero
    • Acceleration for a falling object is conventionally shown as a negative value


  • Non-uniform acceleration will produce a curved velocity-time graph

Finding the Slope of a Curved Line

  • Some questions ask for velocity or acceleration at a particular point or time
  • This is called 'instantaneous' velocity or acceleration
  • It is found by taking the slope of the curved line

  • Identify the point on the x-axis which corresponds with the question
    • Draw a line vertically to meet the curve
  • Take a tangent to the curve at this point
    • Do this carefully, trying out more than one attempt before choosing the correct tangent


Tangents are a useful way to find the slope of a curved line

  • Draw the tangent in place, making it as long as will fit onto the graph
    • Follow the steps above to find the slope of the tangent

Worked example

A skydiver jumps from a plane and reaches terminal velocity after 15 seconds. A graph of her motion is shown.

Use the graph to find the acceleration at 5 seconds.


Step 1: Draw a tangent to the curve at the point where t = 5 s


Step 2: Select points on the graph which are very far apart, and determine the corresponding values of x and y, write these down

Increase in y = (58 -20) = 38 m s−1

Increase in x = (9.75 - 0.75) = 9.0 s

Step 3: Calculate the slope

slope = fraction numerator i n c r e a s e space i n space y over denominator i n r e a s e space i n space x end fraction space equals space 38 over 9 = 4.222  m s−2

Step 4: Write the answer to the correct significant figures

The acceleration at 5.0 s = 4.2 m s−2 (2 sf)

Exam Tip

When working with graphs follow the advice, 'show don't tell'. The examiner will want to see that you used the graph to find your answer, as this skill is part of the toolkit of a good scientist.

Mark very clearly on the graph any points you use to calculate and indicate with clear lines or large triangles where you chose your data from.

And always remember to use the largest section of the graph that you can to find the slope.

You will be given an exam paper with pristine graphs. Don't leave them that way! By the time you finish with the paper, it should be clearly annotated with your method, so the examiner can see exactly where you have earned marks.


You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Lindsay Gilmour

Author: Lindsay Gilmour

Lindsay graduated with First Class Honours from the University of Greenwich and earned her Science Communication MSc at Imperial College London. Now with many years’ experience as a Head of Physics and Examiner for A Level and IGCSE Physics (and Biology!), her love of communicating, educating and Physics has brought her to Save My Exams where she hopes to help as many students as possible on their next steps.

Join over 500 thousand students
getting better grades