Composite Functions (Cambridge (CIE) O Level Additional Maths) : Revision Note

Paul

Author

Paul

Last updated

Did this video help you?

Composite Functions

What is a composite function?

  • A composite function is where one function is applied after another function

Composite function fg(x) applies g first then f
  • The ‘output’ of one function will be the ‘input’ of the next one

  • Sometimes called function-of-a-function

  • A composite function can be denoted

    • space fg left parenthesis x right parenthesis

    • space straight f stretchy left parenthesis straight g left parenthesis x stretchy right parenthesis right parenthesis

    • All of these mean “straight f of straight g left parenthesis x right parenthesis

Composite functions as function machines

 

How do I work with composite functions?

Notation for composite functions
  • Recognise the notation

    •  means “f of g of x”

    The order matters

    • First apply straight g to x to get straight g left parenthesis x right parenthesis

    • Then apply straight f to straight g open parentheses x close parentheses to get straight f stretchy left parenthesis straight g left parenthesis x stretchy right parenthesis right parenthesis

    • Always start with the function closest to the variable

    • fg left parenthesis x right parenthesis is not usually equal to gf left parenthesis x right parenthesis

Special cases

  • fg open parentheses x close parentheses and gf open parentheses x close parentheses are generally different but can sometimes be the same

  • ff open parentheses x close parentheses is written as straight f squared stretchy left parenthesis x stretchy right parenthesis

    • Note that trig functions are exceptions to this rule

      • e.g. sin squared open parentheses x close parentheses means open parentheses sin open parentheses x close parentheses close parentheses squared not sin open parentheses sin open parentheses x close parentheses close parentheses

  • For inverse functions, ff to the power of negative 1 end exponent open parentheses x close parentheses equals straight f to the power of negative 1 end exponent straight f open parentheses x close parentheses equals x

In general fg is a different function to gf

Worked Example

Two functions, straight f open parentheses x close parentheses and straight g open parentheses x close parentheses are

straight f open parentheses x close parentheses equals x squared plus 3 x minus 2
straight g open parentheses x close parentheses equals x plus 3

a) Find straight f open parentheses 3 close parentheses and straight g open parentheses 3 close parentheses.

table row cell straight f open parentheses 3 close parentheses end cell equals cell open parentheses 3 close parentheses squared plus 3 open parentheses 3 close parentheses minus 2 end cell row blank equals cell 9 plus 6 minus 2 end cell end table

straight g open parentheses 3 close parentheses equals 3 plus 3

bold f stretchy left parenthesis 3 stretchy right parenthesis bold equals bold 13 bold comma bold space bold g stretchy left parenthesis 3 stretchy right parenthesis bold equals bold 6

b) Find, in terms of xfg open parentheses x close parentheses.

straight g is the first function to be applied ...

table row cell therefore fg open parentheses x close parentheses end cell equals cell straight f open square brackets x plus 3 close square brackets end cell row blank equals cell open parentheses x plus 3 close parentheses squared plus 3 open parentheses x plus 3 close parentheses minus 2 end cell row blank equals cell x squared plus 6 x plus 9 plus 3 x plus 9 minus 2 end cell end table

Error converting from MathML to accessible text.

Domain & Range of Composite Functions

How do I find the domain and range of composite functions?

  • Use logic to determine the domain and range of a composite function

  • For fg open parentheses x close parentheses the first function to be applied will be straight g

    • So, at best, the domain of fg open parentheses x close parentheses will be the same as the domain of straight g open parentheses x close parentheses

  • However, for this to be the case, the range of straight g open parentheses x close parentheses must be contained within the domain of straight f open parentheses x close parentheses

    • If this is not the case, then restrictions on the domain of fg open parentheses x close parentheses will be required

  • Similarly, at best, the range of fg open parentheses x close parentheses will be the same as the range of straight f open parentheses x close parentheses

    • But if the domain of straight f open parentheses x close parentheses has been affected, the range of fg open parentheses x close parentheses will also be affected

Examiner Tips and Tricks

  • Domain and range are important in composite funcitons like fg open parentheses x close parentheses

    • the ‘output’ (range) of g must be in the domain of f(x), so fg open parentheses x close parentheses could exist, but gf open parentheses x close parentheses may not (or not for some values of x)

Worked Example

Two functions, straight f open parentheses x close parentheses and straight g open parentheses x close parentheses are defined as follows

Error converting from MathML to accessible text.

straight g open parentheses x close parentheses equals x squared comma space space x greater than 1

a) Write down the range of straight f open parentheses x close parentheses and the range of straight g open parentheses x close parentheses.

As the domain of straight f open parentheses x close parentheses is 0 less than x less than 11 over x will always be greater than 1,

The range of Error converting from MathML to accessible text. is bold f bold greater than bold 1

The square of any value will be positive or zero, but here, x equals 0 is not included in the domain for straight g open parentheses x close parentheses.

The range of is bold g bold greater than bold 1

b) Use your answers to (a) to help explain why fg open parentheses x close parentheses does not exist.

bold g is the first function to be applied The range of bold g would need to be contained within the domain of bold f But the range of bold g is bold g bold greater than bold 1 which is outside the domain of bold f which is bold 0 bold less than bold italic x bold less than bold 1 does not exist

c) Find the range of gf open parentheses x close parentheses,

straight f is the first function.  The range of straight f is straight f greater than 1.  This is the same as the domain of straight g space open parentheses x greater than 1 close parentheses.

The range of bold gf is bold gf bold greater than bold 1

👀 You've read 1 of your 5 free revision notes this week
An illustration of students holding their exam resultsUnlock more revision notes. It's free!

By signing up you agree to our Terms and Privacy Policy.

Already have an account? Log in

Did this page help you?

Paul

Author: Paul

Expertise: Maths Content Creator (Previous)

Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams.

Download notes on Composite Functions