Applications of Differentiation (Cambridge (CIE) O Level Additional Maths) : Revision Note

Amber

Author

Amber

Last updated

Finding Gradients

How do I use the derivative to find the gradient of a curve?

  • The gradient of a curve at a point is the gradient of the tangent to the curve at that point

  • To find the gradient of a curve, at any point on the curve

    • differentiate to find fraction numerator straight d y over denominator straight d x end fraction (unless fraction numerator straight d y over denominator straight d x end fractionis already known)

    • substitute the x‑coordinate of the point into the derivative fraction numerator d y over denominator d x end fraction and evaluate

Grad Tang Norm Illustr 1, A Level & AS Maths: Pure revision notes

How do I find the approximate change in y as x increases?

  • gradient equals fraction numerator change space in space y over denominator change space in space x end fractionso, for small changes you can write 

    • change space in space y equals gradient space cross times space change space in space x

  • For example, if the gradient of y equals x minus 1 over x at x equals 2 is 5 over 4 

    • what is the approximate change in y as x increases from 2 to 2 plus h, where h is small?

      • change space in space y equals gradient space cross times space change space in space x equals 5 over 4 h 

Examiner Tips and Tricks

  • Read the question carefully; sometimes you are given fraction numerator d y over denominator d x end fraction and so don't need to differentiate initially - don't just automatically differentiate the first thing you see!

  • The following mean the same thing:

    • "Find the gradient of the curve at x equals 2"

    • "Find the gradient of the tangent at x equals 2"

      • the tangent gradient = curve gradient at that point

    • "Find the rate of change of y with respect to x at x equals 2"

Worked Example

A curve has the equation y equals 4 over 3 x cubed plus 3 x minus 8.

(a) Find the gradient of the curve when x equals 2.

y is already in a form that can be differentiated

fraction numerator straight d y over denominator straight d x end fraction equals 4 x squared plus 3

Substitute x equals 2 into fraction numerator straight d y over denominator straight d x end fraction

fraction numerator straight d y over denominator straight d x end fraction equals 4 cross times 2 squared plus 3 equals 19

The gradient of the curve at bold italic x bold equals bold 2 is 19

(b) Work out the possible values of x for which the rate of change of y with respect to x is 4.

"Rate of change" is another way of describing the derivative

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals 4 row cell 4 x squared plus 3 end cell equals 4 end table

Solve this equation to find x
Note that it is quadratic equation so it could have up to two solutions
The question refers to 'values' implying there is (or could be) more than one value for x

table row cell 4 x squared end cell equals 1 row cell x squared end cell equals cell 1 fourth end cell row x equals cell plus-or-minus square root of 1 fourth end root end cell row x equals cell plus-or-minus 1 half end cell end table

The possible values of bold italic x, that give a rate of change of 4, are bold italic x bold equals bold 1 over bold 2 and bold italic x bold equals bold minus bold 1 over bold 2

Did this video help you?

Increasing & Decreasing Functions

What are increasing and decreasing functions?

  • A function is increasing when fraction numerator d y over denominator d x end fraction greater than 0 (the gradient is positive)

    • This means graph of a function goes up as bold italic x increases

  • A function is decreasing when fraction numerator d y over denominator d x end fraction less than 0 (the gradient is negative)

    • This means graph of a function goes down as bold italic x increases

 

Incr Decr Illustr 1, A Level & AS Maths: Pure revision notes

 

How do I find where functions are increasing or decreasing?

  • To identify the intervals on which a function is increasing or decreasing 

STEP 1

Find the derivative f'(x)

STEP 2

Solve the inequalities

bold space bold italic f bold apostrophe bold left parenthesis bold italic x bold right parenthesis bold greater than bold 0 (for increasing intervals) and/or

bold space bold italic f bold apostrophe bold left parenthesis bold italic x bold right parenthesis bold less than bold 0 (for decreasing intervals)

  • Most functions are a combination of increasing, decreasing and stationary

    • a range of values ofspace x (interval) is given where a function satisfies each condition

    • e.g.  The functionspace f begin mathsize 16px style stretchy left parenthesis x stretchy right parenthesis end style size 16px equals size 16px x to the power of size 16px 2 has derivativespace f to the power of apostrophe stretchy left parenthesis x stretchy right parenthesis equals 2 x so

      • space f left parenthesis x right parenthesis is decreasing for x less than 0

      • space f left parenthesis x right parenthesis is stationary at x equals 0

      • space f left parenthesis x right parenthesis is increasing for x greater than 0

  • To identify the intervals (the range of x values) for which a curve is increasing or decreasing you need to:

  1. Find the derivative fraction numerator d y over denominator d x end fraction

  2. Solve the inequalities fraction numerator d y over denominator d x end fraction greater than 0 (for increasing intervals) or fraction numerator d y over denominator d x end fraction less than 0 (for decreasing intervals)

Examiner Tips and Tricks

  • In an exam, if you need to show a function is increasing or decreasing you can use either strict (<, >) or non-strict (≤, ≥) inequalities

    • You will get the marks either way in this course

Worked Example

For what values of x is y equals 2 x cubed minus 3 x squared plus 5 a decreasing function?

The function is decreasing when its gradient open parentheses fraction numerator d y over denominator d x end fraction close parentheses is less than 0.

Find the derivative of the function by differentiating.

table row cell fraction numerator d y over denominator d x end fraction end cell equals cell space 6 x squared space minus space 6 x end cell end table 

Solve the inequality fraction numerator d y over denominator d x end fraction space less than space 0 to find the set of values where the gradient is negative.

table row cell 6 x squared space minus space 6 x space end cell less than cell space 0 end cell end table

Factorise.

table row cell 6 x open parentheses x space minus space 1 close parentheses space end cell less than cell space 0 end cell end table

The solutions to fraction numerator d y over denominator d x end fraction space equals space 0 are x space equals space 0 and  x space equals space 1. Find the correct way around for the inequalities by considering the graph of fraction numerator d y over denominator d x end fraction. The graph is a positive quadratic, so the function is negative between the values of 0 and 1 (where it is below the x-axis).

Considering a sketch of the graph of the gradient function may help you see this.

3CqZzydq_aqa-fm-increasing-and-decreasing-functions-rn-diagram-we-1

 

You can check your answers by considering a sketch of the original function, it should be decreasing at the point where 0 space less than space x space less than space 1.

aqa-fm-increasing-and-decreasing-functions-rn-diagram-we-2

bold 0 bold space bold less than bold space bold italic x bold space bold less than bold space bold 1

Did this video help you?

Tangents & Normals

What is a tangent?

  • At any point on the graph of a (non-linear) function, the tangent is the straight line that touches the graph at a point without crossing through it

  • Its gradient is given by the derivative function

Grad Tang Norm Illustr 2

How do I find the equation of a tangent?

  • To find the equation of a straight line, a point and the gradient are needed

  • The gradient, m, of the tangent to the function y equals straight f open parentheses x close parentheses at left parenthesis x subscript 1 comma blank y subscript 1 right parenthesis is

    • You can find this by differentiating the function, and then substituting the x-coordinate of the point into the derivative

  • Therefore find the equation of the tangent to the function y equals straight f left parenthesis x right parenthesis at the point left parenthesis x subscript 1 comma blank y subscript 1 right parenthesis by substituting the gradient, straight f apostrophe open parentheses x subscript 1 close parentheses, and point left parenthesis x subscript 1 comma blank y subscript 1 right parenthesis into y minus y subscript 1 equals m open parentheses x minus x subscript 1 close parentheses, giving:

    •  

  • (You could also substitute into y equals m x plus c)

What is a normal?

  • At any point on the graph of a (non-linear) function, the normal is the straight line that passes through that point and is perpendicular to the tangent

Grad Tang Norm Illustr 3

How do I find the equation of a normal?

  • The gradients of two perpendicular lines are negative reciprocals

    • This means that if m subscript 1 is the gradient of the first line and m subscript 2 is the gradient of a line perpendicular to the first line, then m subscript 2 equals fraction numerator negative 1 over denominator m subscript 1 end fraction

    • Rearranging the formula above, m subscript 1 cross times m subscript 2 equals negative 1 is a useful way to test whether two lines are perpendicular

  • Therefore gradient of the normal to the function y equals straight f open parentheses x close parenthesesat left parenthesis x subscript 1 comma blank y subscript 1 right parenthesis is Error converting from MathML to accessible text.

  • Find the equation of the normal to the function y equals straight f left parenthesis x right parenthesis at the point left parenthesis x subscript 1 comma blank y subscript 1 right parenthesis by using y minus y subscript 1 equals fraction numerator negative 1 over denominator straight f to the power of straight apostrophe stretchy left parenthesis x subscript 1 stretchy right parenthesis end fraction left parenthesis x minus x subscript 1 right parenthesis

    • (or y equals fraction numerator negative 1 over denominator straight f to the power of apostrophe open parentheses x subscript 1 close parentheses end fraction x plus c)

Examiner Tips and Tricks

  • To be successful in this topic, first make sure you are confident with finding the equation of a straight line!

Worked Example

The function straight f left parenthesis x right parenthesis is defined by

 straight f stretchy left parenthesis x stretchy right parenthesis equals 2 x to the power of 4 plus 3 over x squared blank x not equal to 0

a) Find an equation for the tangent to the curve y equals straight f left parenthesis x right parenthesis at the point where x equals 1, giving your answer in the form y equals m x plus c.

First find the derivative straight f apostrophe open parentheses x close parentheses by differentiating

Start by rewriting straight f open parentheses x close parenthesesas powers of x

straight f open parentheses x close parentheses equals 2 x to the power of 4 plus 3 x to the power of negative 2 end exponent

Now differentiate

straight f apostrophe open parentheses x close parentheses equals 8 x cubed minus 6 x to the power of negative 3 end exponent

Now substitute x equals 1 into straight f apostrophe open parentheses x close parentheses to find the gradient of the tangent

table attributes columnalign right center left columnspacing 0px end attributes row cell straight f apostrophe open parentheses 1 close parentheses end cell equals cell 8 open parentheses 1 close parentheses cubed minus 6 open parentheses 1 close parentheses to the power of negative 3 end exponent end cell row blank equals cell 8 minus 6 end cell row blank equals 2 end table

We also need the y-coordinate, so substitute x equals 1 into straight f open parentheses x close parentheses also

table row cell straight f open parentheses 1 close parentheses end cell equals cell 2 open parentheses 1 close parentheses to the power of 4 plus 3 open parentheses 1 close parentheses to the power of negative 2 end exponent end cell row blank equals cell 2 plus 3 end cell row blank equals 5 end table

Now we can substitute the point (1, 5) and the gradient, 2, into y minus y subscript 1 equals m open parentheses x subscript 1 close parentheses open parentheses x minus x subscript 1 close parentheses

table row cell y minus 5 end cell equals cell 2 stretchy left parenthesis x minus 1 stretchy right parenthesis end cell end table

Note that we are asked for the final answer in the form y equals m x plus c, so rearrange to this form

table attributes columnalign right center left columnspacing 0px end attributes row cell y minus 5 end cell equals cell 2 x minus 2 end cell end table

bold italic y bold equals bold 2 bold italic x bold plus bold 3

b) Find an equation for the normal at the point where x equals 1, giving your answer in the form a x plus b y plus d equals 0, where a, b and d are integers.

We already have the gradient of the tangent; the gradient of the normal is fraction numerator negative 1 over denominator m end fraction where m is the gradient of the tangent

gradient of normal = fraction numerator negative 1 over denominator 2 end fraction

Substitute the point (1, 5) from part (a) and the gradient of the normal into y minus y subscript 1 equals m open parentheses x minus x subscript 1 close parentheses

table row cell y minus 5 end cell equals cell open parentheses fraction numerator negative 1 over denominator 2 end fraction close parentheses open parentheses x minus 1 close parentheses end cell end table

And rearrange into the form required

table row cell y minus 5 end cell equals cell negative 1 half x plus 1 half end cell row cell 1 half x plus y minus 5 1 half end cell equals 0 end table

Note that ab and d must be integers so multiply by 2 to clear the fractions

table row cell bold italic x bold plus bold 2 bold italic y bold minus bold 11 end cell bold equals bold 0 end table

 

👀 You've read 1 of your 5 free revision notes this week
An illustration of students holding their exam resultsUnlock more revision notes. It's free!

By signing up you agree to our Terms and Privacy Policy.

Already have an account? Log in

Did this page help you?

Amber

Author: Amber

Expertise: Maths Content Creator

Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.

Download notes on Applications of Differentiation