Integrating e^x & 1/x (Cambridge (CIE) O Level Additional Maths): Revision Note

Exam code: 4037

Paul

Author

Paul

Last updated

Integrating e^x & 1/x

How do I integrate exponentials and 1/x?

  • The integrals involvingbold space bold e to the power of bold italic x andspace bold ln bold space bold italic x are

bold space bold integral bold space bold e to the power of bold italic x bold space bold d bold italic x bold equals bold space bold e to the power of bold italic x bold plus bold italic c

where bold italic c is the constant of integration

  • For the linear functionbold space bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis, wherespace bold italic a andspace bold italic b are constants,

 bold space bold integral bold e to the power of bold italic a bold italic x bold plus bold italic b end exponent bold space bold d bold italic x bold equals bold 1 over bold italic a bold e to the power of bold italic a bold italic x bold plus bold italic b end exponent bold plus bold italic c

  • It follows from the last result that

 

  • which can be deduced using Reverse Chain Rule

  • With ln, it can be useful to write the constant of integration,space c, as a logarithm

    • using the laws of logarithms, the answer can be written as a single term

    • wherespace k is a constant

    • This is similar to the special case of differentiatingspace ln space left parenthesis a x plus b right parenthesis whenspace b equals 0

Worked Example

A curve has the gradient functionspace f apostrophe left parenthesis x right parenthesis equals fraction numerator 3 over denominator 3 x plus 2 end fraction plus straight e to the power of 4 minus x end exponent.

Given the exact value ofspace f left parenthesis 1 right parenthesis isspace ln space 10 minus straight e cubed find an expression forspace f left parenthesis x right parenthesis.

 

To find f open parentheses x close parentheses, we need to integrate the expression for f apostrophe open parentheses x close parentheses.   

f open parentheses x close parentheses equals integral fraction numerator 3 over denominator 3 x plus 2 end fraction plus e to the power of 4 minus x end exponent space d x  

Rewrite as two separate integrals which can be found individually, and factor out any constants.  

f open parentheses x close parentheses equals 3 integral fraction numerator 1 over denominator 3 x plus 2 end fraction d x space plus space integral e to the power of 4 minus x end exponent space d x  

Use the two results: integral fraction numerator 1 over denominator a x plus b end fraction d x equals 1 over a ln vertical line a x plus b vertical line space plus space c integral e to the power of a x plus b end exponent d x space equals fraction numerator space 1 over denominator a end fraction space e to the power of a x plus b end exponent space plus c   

f open parentheses x close parentheses equals 3 open parentheses 1 third ln vertical line 3 x plus 2 vertical line close parentheses space plus space minus 1 e to the power of 4 minus x end exponent space plus c
f open parentheses x close parentheses equals ln vertical line 3 x plus 2 vertical line space minus space e to the power of 4 minus x end exponent space plus c  

The question states that f open parentheses 1 close parentheses equals ln 10 space minus space e cubed, so substitute in x equals 1 and equate to the given expression.  

ln space 10 space minus space e cubed space equals space ln vertical line 3 open parentheses 1 close parentheses plus 2 vertical line space minus space e to the power of 4 minus 1 end exponent plus c  

Simplify and solve to find c.  

ln space 10 space minus space e cubed space equals space ln space 5 space minus space e cubed space plus space c
ln space 10 minus ln space 5 space equals space c  

Recall from laws of logarithms that ln space a space minus space ln space b space equals ln space a over b space.  

c equals ln space 10 over 5 equals ln space 2  

Rewrite the full expression for f open parentheses x close parentheses.  

 
or by combining logs, this could be written as f open parentheses x close parentheses equals ln space open parentheses 2 vertical line 3 x plus 2 vertical line close parentheses space minus space e to the power of 4 minus x end exponent  

👀 You've read 1 of your 5 free revision notes this week
An illustration of students holding their exam resultsUnlock more revision notes. It's free!

By signing up you agree to our Terms and Privacy Policy.

Already have an account? Log in

Did this page help you?

Paul

Author: Paul

Expertise: Maths Content Creator

Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams.

Download notes on Integrating e^x & 1/x