Sample Mean Distribution (DP IB Applications & Interpretation (AI)): Revision Note

Combinations of Normal Variables

What is a linear combination of normal random variables?

  • Suppose you have n independent normal random variables X subscript i tilde straight N invisible function application open parentheses mu subscript i comma blank sigma subscript i superscript 2 close parentheses for i = 1,2,3, ..., n

  • A linear combination is of the form X equals a subscript 1 X subscript 1 plus a subscript 2 X subscript 2 plus blank horizontal ellipsis plus a subscript n X subscript n plus b where ai and b are constants

  • The mean and variance can be calculated using results from random variables

    • straight E invisible function application open parentheses X close parentheses equals a subscript 1 mu subscript 1 plus a subscript 2 mu subscript 2 plus blank horizontal ellipsis plus a subscript n mu subscript n plus b

    • Var invisible function application open parentheses X close parentheses equals a subscript 1 superscript 2 sigma subscript 1 superscript 2 plus a subscript 2 superscript 2 sigma subscript 2 superscript 2 plus blank horizontal ellipsis plus a subscript n superscript 2 sigma subscript n superscript 2

      • The variables need to be independent for this result to be true

  • A linear combination of n independent normal random variables is also a normal random variable itself

    •  X tilde straight N invisible function application open parentheses a subscript 1 mu subscript 1 plus a subscript 2 mu subscript 2 plus blank horizontal ellipsis plus a subscript n mu subscript n plus b comma space a subscript 1 superscript 2 sigma subscript 1 superscript 2 plus a subscript 2 superscript 2 sigma subscript 2 superscript 2 plus blank horizontal ellipsis plus a subscript n superscript 2 sigma subscript n superscript 2 close parentheses

    • This can be used to find probabilities when combining normal random variables

What is meant by the sample mean distribution?

  • Suppose you have a population with distribution X and you take a random sample with n observations X1, X2, ..., Xn

  • The sample mean distribution is the distribution of the values of the sample mean

    • top enclose X equals fraction numerator X subscript 1 plus X subscript 2 plus blank horizontal ellipsis plus X subscript n over denominator n end fraction

  • For an individual sample the sample mean x with bar on top can be calculated

    • This is also called a point estimate

    • top enclose X is the distribution of the point estimates

What does the sample mean distribution look like when X is normally distributed?

  • If the population is normally distributed then the sample mean distribution is also normally distributed

  • straight E invisible function application open parentheses X with bar on top close parentheses equals straight E invisible function application open parentheses fraction numerator X subscript 1 plus X subscript 2 plus blank horizontal ellipsis plus X subscript n over denominator n end fraction close parentheses equals fraction numerator straight E invisible function application open parentheses X subscript 1 close parentheses plus straight E invisible function application open parentheses X subscript 2 close parentheses plus blank horizontal ellipsis plus straight E left parenthesis X subscript n right parenthesis over denominator n end fraction equals fraction numerator mu plus mu plus blank horizontal ellipsis plus mu over denominator n end fraction equals fraction numerator n mu over denominator n end fraction equals mu

  • Var invisible function application open parentheses X with bar on top close parentheses equals Var invisible function application open parentheses fraction numerator X subscript 1 plus X subscript 2 plus blank horizontal ellipsis plus X subscript n over denominator n end fraction close parentheses equals fraction numerator Var invisible function application open parentheses X subscript 1 close parentheses plus Var invisible function application open parentheses X subscript 2 close parentheses plus blank horizontal ellipsis plus Var left parenthesis X subscript n right parenthesis over denominator n ² end fraction equals fraction numerator sigma ² plus sigma ² plus blank horizontal ellipsis plus sigma ² over denominator n ² end fraction equals fraction numerator n sigma ² over denominator n ² end fraction equals sigma squared over n

  • Therefore you divide the variance of the population by the size of the sample to get the variance of the sample mean distribution

    • X tilde straight N invisible function application open parentheses mu comma sigma squared close parentheses rightwards double arrow X with bar on top tilde straight N invisible function application open parentheses mu comma sigma squared over n close parentheses

Worked Example

Amber makes a cup of tea using a hot drink vending machine. When the hot water button is pressed the machine dispenses  Wml of hot water and when the milk button is pressed the machine dispenses M ml of milk. It is known that W blank tilde straight N invisible function application open parentheses 100 comma blank 15 squared close parentheses and M blank tilde straight N invisible function application open parentheses 10 comma blank 2 squared close parentheses

To make a cup of tea Amber presses the hot water button three times and the milk button twice. The total amount of liquid in Amber’s cup is modelled by C ml.

a) Write down the distribution of C.

4-9-1-ib-ai-hl-linear-normal-comb-a-we-solution

b) Find the probability that the total amount of liquid in Amber's cup exceeds 360 ml.

4-9-1-ib-ai-hl-linear-normal-comb-b-we-solution

c) Amber makes 15 cups of tea and calculates the mean C with bar on top. Write down the distribution of C with bar on top.

4-9-1-ib-ai-hl-linear-normal-comb-c-we-solution

You've read 1 of your 5 free revision notes this week

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Dan Finlay

Author: Dan Finlay

Expertise: Maths Subject Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.

Download notes on Sample Mean Distribution