Rationalising Denominators (Edexcel GCSE Maths): Revision Note

Exam code: 1MA1

Amber

Written by: Amber

Reviewed by: Dan Finlay

Updated on

Did this video help you?

Rationalising Denominators

What does rationalising the denominator mean?

  • If a fraction has a denominator containing a surd then it has an irrational denominator

    • E.g. fraction numerator 4 over denominator square root of 5 end fraction or square root of 2 over 3 end root equals fraction numerator square root of 2 over denominator square root of 3 end fraction

  • The fraction can be rewritten as an equivalent fraction, but with a rational denominator

    • E.g. fraction numerator 4 square root of 5 over denominator 5 end fraction or fraction numerator square root of 6 over denominator 3 end fraction

  • The numerator may contain a surd, but the denominator is rationalised

How do I rationalise simple denominators?

  • If the denominator is a surd:

    • Multiply the top and bottom of the fraction by the surd on the denominator

      • fraction numerator a over denominator square root of straight b end fraction equals blank fraction numerator a over denominator square root of straight b end fraction blank cross times blank fraction numerator square root of straight b over denominator square root of straight b end fraction

      • This is equivalent to multiplying by 1, so does not change the value of the fraction

      • square root of b space cross times space square root of b space equals space b so the denominator is no longer a surd

    • Multiply the fractions as you would usually, and simplify if needed

      • fraction numerator a square root of b over denominator b end fraction

How do I rationalise harder denominators?

  • If the denominator is an expression containing a surd:

    • For example fraction numerator 2 over denominator 3 space plus space square root of 5 end fraction 

    • Multiply the top and bottom of the fraction by the expression on the denominator, but with the sign changed

      • fraction numerator 2 over denominator 3 plus square root of 5 end fraction equals fraction numerator 2 over denominator 3 space plus space square root of 5 end fraction space cross times space fraction numerator 3 space minus space square root of 5 over denominator 3 space minus space square root of 5 end fraction

      • This is equivalent to multiplying by 1, so does not change the value of the fraction

    • Multiply the fractions as you would usually (use brackets to help)

      • fraction numerator 2 over denominator 3 plus square root of 5 end fraction equals fraction numerator 2 open parentheses 3 minus square root of 5 close parentheses over denominator open parentheses 3 plus square root of 5 close parentheses open parentheses 3 minus square root of 5 close parentheses end fraction

    • Expand any brackets, and simplify

      • fraction numerator 2 over denominator 3 plus square root of 5 end fraction equals fraction numerator 6 minus 2 square root of 5 over denominator open parentheses 3 cross times 3 close parentheses plus 3 square root of 5 minus 3 square root of 5 minus open parentheses square root of 5 square root of 5 close parentheses end fraction equals fraction numerator 6 minus 2 square root of 5 over denominator 9 minus open parentheses 5 close parentheses end fraction

    • You can use the difference of two squares to expand the denominator quickly

      • open parentheses a plus square root of b close parentheses open parentheses a minus square root of b close parentheses equals a squared minus open parentheses square root of b close parentheses squared equals a squared minus b

      • This is what makes the denominator rational

    • Simplify

      • fraction numerator 2 over denominator 3 plus square root of 5 end fraction equals fraction numerator 6 minus 2 square root of 5 over denominator 4 end fraction equals fraction numerator 3 minus square root of 5 over denominator 2 end fraction

 

Examiner Tips and Tricks

If your answer still has a surd on the bottom, go back and check your working!

Worked Example

Write fraction numerator 4 over denominator square root of 6 space minus space 2 end fraction in the form p space plus space q square root of r where p comma space q spaceand r are integers and r has no square factors.

Multiply the top and bottom of the fraction by the expression on the denominator, but with the sign changed

fraction numerator 4 over denominator square root of 6 minus 2 end fraction equals fraction numerator 4 over denominator square root of 6 space minus space 2 end fraction space cross times space fraction numerator square root of 6 space plus space 2 over denominator square root of 6 space plus space 2 end fraction

Multiply the fractions as you would usually

fraction numerator 4 over denominator square root of 6 minus 2 end fraction equals space fraction numerator 4 open parentheses square root of 6 space plus space 2 close parentheses over denominator open parentheses square root of 6 space minus space 2 close parentheses open parentheses square root of 6 space plus space 2 close parentheses end fraction

Expand the brackets
The denominator can be expanded using the difference of two squares

fraction numerator 4 over denominator square root of 6 minus 2 end fraction equals fraction numerator 4 square root of 6 plus 8 over denominator open parentheses square root of 6 close parentheses squared minus open parentheses 2 close parentheses squared end fraction equals fraction numerator 4 square root of 6 plus 8 over denominator 6 minus 4 end fraction

Simplify

fraction numerator 4 over denominator square root of 6 minus 2 end fraction equals fraction numerator 4 square root of 6 plus 8 over denominator 2 end fraction equals 2 square root of 6 plus 4

Write in the form given in the question

bold 4 bold space bold plus bold space bold 2 square root of bold 6
bold italic p bold space bold equals bold space bold 4
bold italic q bold space bold equals bold space bold 2
bold italic r bold space bold equals bold space bold 6


👀 You've read 1 of your 5 free revision notes this week
An illustration of students holding their exam resultsUnlock more revision notes. It’s free!

By signing up you agree to our Terms and Privacy Policy.

Already have an account? Log in

Did this page help you?

Amber

Author: Amber

Expertise: Maths Content Creator

Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.

Dan Finlay

Reviewer: Dan Finlay

Expertise: Maths Subject Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.

Download notes on Rationalising Denominators