Differentiation (Edexcel A Level Maths: Pure): Exam Questions

Exam code: 9MA0

3 hours37 questions
13 marks

Differentiate

(i) 5 x

(ii) 2 x cubed

(iii) x to the power of begin inline style 1 half end style end exponent

22 marks

Given that 

y equals 2 x to the power of begin inline style 1 half end style end exponent plus 3 x to the power of negative 1 end exponent

find an expression for fraction numerator straight d y over denominator straight d x end fraction.

3a1 mark

Given that

y equals 4 x squared minus 3 x plus 19

find fraction numerator straight d y over denominator straight d x end fraction writing your answer in simplest form.

3b2 marks

Given that

y equals x cubed minus 5 x squared plus 14 x minus 1

find fraction numerator straight d y over denominator straight d x end fraction writing your answer in simplest form.

3c2 marks

Given that

y equals 4 x to the power of 3 over 2 end exponent minus 3 x to the power of negative 1 end exponent

find fraction numerator straight d y over denominator straight d x end fraction writing your answer in simplest form.

42 marks

A curve has the equation

y equals open parentheses x plus 3 close parentheses open parentheses x minus 2 close parentheses

Find an expression for fraction numerator straight d y over denominator straight d x end fraction.

13 marks

Given that

y equals 2 x squared

use differentiation from first principles to show that

fraction numerator straight d y over denominator straight d x end fraction equals 4 x

22 marks

A curve has equation

y equals 2 over 3 x cubed minus 7 over 2 x squared minus 4 x plus 5

Find fraction numerator straight d y over denominator straight d x end fraction writing your answer in simplest form.

3a2 marks

The function straight f left parenthesis x right parenthesis is given by

straight f open parentheses x close parentheses equals fraction numerator 2 x to the power of 1 third end exponent plus 3 x to the power of 2 over 3 end exponent over denominator x end fraction

Show that straight f left parenthesis x right parenthesis can be written in the form

straight f open parentheses x close parentheses equals a x to the power of b plus c x to the power of d

where a, b, c and d are constants to be found.

3b2 marks

Hence find an expression for straight f apostrophe left parenthesis x right parenthesis.

44 marks

Find the coordinates of any points on the curve

y equals 2 x cubed minus 9 x squared plus 12 x

at which the gradient is zero.

5
Sme Calculator
2 marks

Find the x-coordinate of the point on the curve with equation

 space y equals 5 x squared minus 16 x

at which the gradient is 4.

61 mark

A student uses differentiation from first principles to show that the derivative of 7 x squared is 14 x.

  • Their working is shown below.

  • There is an error in their argument in step 6.

Write out the correct argument for step 6.

STEP 1

straight f open parentheses x close parentheses equals 7 x squared

 

STEP 2

straight f apostrophe open parentheses x close parentheses equals limit as h rightwards arrow 0 of fraction numerator straight f open parentheses x plus h close parentheses minus straight f left parenthesis x right parenthesis over denominator h end fraction

 

STEP 3

straight f apostrophe open parentheses x close parentheses equals limit as h rightwards arrow 0 of fraction numerator 7 open parentheses x plus h close parentheses squared minus 7 x squared over denominator h end fraction

 

STEP 4

straight f apostrophe open parentheses x close parentheses equals limit as h rightwards arrow 0 of fraction numerator 7 x squared plus 14 h x plus 7 h squared minus 7 x squared over denominator h end fraction

 

STEP 5

straight f apostrophe open parentheses x close parentheses equals limit as h rightwards arrow 0 of space fraction numerator h left parenthesis 14 x plus 7 h right parenthesis over denominator h end fraction

 

STEP 6

straight f apostrophe open parentheses x close parentheses equals 14 x plus 7 h

When  h equals 0,  14 x plus 7 h equals 14 x

therefore straight f apostrophe open parentheses x close parentheses equals 14 x

73 marks

Given that

straight f open parentheses x close parentheses equals 4 x

Use differentiation from first principles to show that

straight f apostrophe open parentheses x close parentheses equals 4

83 marks

Given that

straight f open parentheses x close parentheses equals negative 3 x

Use differentiation from first principles to show that

straight f apostrophe open parentheses x close parentheses equals negative 3

93 marks

Given that

y equals open parentheses square root of x close parentheses cubed plus fraction numerator space 2 over denominator square root of x end fraction

find fraction numerator straight d y over denominator straight d x end fraction.

103 marks

Given that

y equals square root of x plus space fraction numerator 1 over denominator square root of x end fraction

find fraction numerator d y over denominator d x end fraction.

11a3 marks

A curve has equation

y equals open parentheses 2 x plus 3 close parentheses open parentheses 3 x minus 1 close parentheses

Find fraction numerator straight d y over denominator straight d x end fraction writing your answer in simplest form.

11b2 marks

A curve has equation

y equals x cubed open parentheses 1 over x cubed minus 2 over x squared plus 3 over x close parentheses

Find fraction numerator straight d y over denominator straight d x end fraction writing your answer in simplest form.

12a2 marks

The function straight f is defined by

straight f open parentheses x close parentheses equals 2 x cubed minus x squared minus 4 x plus 3

Find straight f apostrophe open parentheses x close parentheses writing your answer in simplest form.

12b2 marks

Hence solve the equation

straight f apostrophe open parentheses x close parentheses equals 0

13a2 marks

A curve has the equation

y equals 3 x minus 4 x to the power of negative 2 end exponent space space space space space space space space space space x not equal to 0

Find fraction numerator d y over denominator d x end fraction.

13b2 marks

Find the coordinates of the point on the curve where the gradient is 2.

14a2 marks

The function straight f is defined by

straight f open parentheses x close parentheses equals x cubed minus 6 x squared minus c x plus 12

where c is a constant.

Find an expression for straight f apostrophe open parentheses x close parentheses in terms of x and c.

14b2 marks

Given that the equation straight f apostrophe open parentheses x close parentheses equals 0 has exactly one real solution, find the value of c.

15a2 marks

A curve has equation

fraction numerator y over denominator x minus 3 end fraction space equals x squared plus 1

Write the equation of the curve in the form

y equals a x cubed plus b x squared plus c x plus d

where a, b, c and d are constants to be found.

15b2 marks

Hence find fraction numerator d y over denominator d x end fraction writing your answer in simplest form.

15c3 marks

Find the coordinates of the point(s) on the curve where the gradient is negative 2.

16a3 marks

A curve has the equation

y equals a x squared plus b x plus c

where a, b and c are non-zero constants.

  • The gradient at the point open parentheses negative 1 comma space 13 close parentheses is negative 7

  • The gradient at the point open parentheses 1 comma space 3 close parentheses is negative 3

Show that

negative 2 a plus b equals negative 7

and

2 a plus b equals negative 3

16b2 marks

Hence find a and b.

16c2 marks

By considering the point open parentheses negative 1 comma space 13 close parentheses, find c.

17a2 marks

A curve has equation

y equals negative 3 x cubed plus 5 x squared minus 3 x plus square root of 13

Find fraction numerator d y over denominator d x end fraction writing your answer in simplest form.

17b2 marks

A curve has equation

y equals 9 x to the power of 1 third end exponent minus 6 x to the power of negative 1 third end exponent

Find fraction numerator d y over denominator d x end fraction.

18a2 marks

A curve has equation

y equals negative 5 over 4 x cubed space plus space 3 over 5 x squared space minus space x square root of 2 plus pi

Find fraction numerator d y over denominator d x end fraction writing your answer in simplest form.

18b2 marks

A curve has equation

y equals 3 over 2 x to the power of 4 over 5 end exponent minus space 10 over 3 x to the power of negative 4 over 5 end exponent

Find fraction numerator d y over denominator d x end fraction writing your answer in simplest form.

14 marks

Given that

straight f open parentheses x close parentheses equals a x squared

Use differentiation from first principles to show that

straight f apostrophe open parentheses x close parentheses equals 2 a x

where a is a constant.

25 marks

Given that

straight f open parentheses x close parentheses equals 2 x cubed

Use differentiation from first principles to show that

straight f apostrophe open parentheses x close parentheses equals 6 x squared

34 marks

A curve has equation

y equals fraction numerator space 1 over denominator square root of x end fraction open parentheses space 1 plus 1 over x close parentheses

Show that

fraction numerator d y over denominator d x end fraction equals a x to the power of b plus c x to the power of d

where a, b, c and d are constants to be found.

4a4 marks

A curve has equation

y equals open parentheses 2 x minus 1 close parentheses to the power of 2 space end exponent open parentheses x plus 1 close parentheses

Find fraction numerator d y over denominator d x end fraction writing your answer in simplest form.

4b4 marks

A curve has equation

y equals space 1 over x to the power of 5 space left parenthesis x squared plus square root of x minus 1 right parenthesis

Find fraction numerator d y over denominator d x end fraction.

53 marks

The function straight f is defined by

straight f open parentheses x close parentheses equals x cubed minus 4 x squared plus 6 x minus 9

Show that there are no solutions to the equation

straight f apostrophe open parentheses x close parentheses equals 0

6a3 marks

A curve has the equation

y equals 3 over 8 x to the power of 4 over 3 end exponent minus 12 x to the power of 1 third end exponent

Show that 

fraction numerator d y over denominator d x end fraction space equals a x to the power of negative 2 over 3 end exponent open parentheses x plus b close parentheses

where a and b are rational numbers to be found.

6b2 marks

Hence find the coordinates of the point on the curve where the gradient is 0.

74 marks

A curve has the equation

y equals 4 x cubed plus b x squared plus 3 x minus 17

where b is a constant.

There is only one point on the curve where the gradient of the tangent at that point is zero.

Find the possible values of b.

86 marks

A curve has equation

y equals a x squared plus b x plus c

where a, b and c are constants.

  • The gradient at the point open parentheses negative 2 comma space 0 close parentheses is 8

  • The gradient at the point open parentheses 1 comma space minus 3 close parentheses is negative 10

Find a, b and c.

95 marks

The function straight f is defined by

space straight f open parentheses x close parentheses equals 2 x cubed plus p x squared plus 3 x minus 16

where p is a constant.

Find all the possible values of p for which the equation

straight f apostrophe open parentheses x close parentheses equals 0

has at least one real solution.

106 marks

A curve has the equation

y equals x square root of x plus fraction numerator 48 over denominator square root of x space end fraction space space space space space space space space space space space x greater than 0

Find the coordinates of the point on the curve where the gradient is zero.

14 marks

Given that

y equals fraction numerator x minus 4 over denominator 2 plus square root of x end fraction space space space space x greater than 0

show that

fraction numerator d y over denominator d x end fraction equals fraction numerator 1 over denominator A square root of x end fraction space space space space x greater than 0

where A is a constant to be found.

25 marks

A curve has equation

y equals space open parentheses 1 over x minus fraction numerator 1 over denominator x square root of x end fraction close parentheses squared space space space space space space space space space space space space space space x greater than 0

Find fraction numerator d y over denominator d x end fraction, writing your answer in the form

fraction numerator straight d y over denominator straight d x end fraction equals a x to the power of k subscript 1 end exponent plus b x to the power of k subscript 2 end exponent plus c x to the power of k subscript 3 end exponent

where

  • a, b and c are constants to be found

  • k subscript 1, k subscript 2 and k subscript 3 are terms of a descending arithmetic sequence to be found

35 marks

A curve has equation 

fraction numerator square root of y over denominator negative 1 space plus space square root of x end fraction space equals 1 over x space space space space space space space space space space space space space space space x greater than 1

Find fraction numerator d y over denominator d x end fraction, writing the terms in your answer in ascending powers of x.

46 marks

A curve has the equation

y equals a x squared plus b x plus c

where a, b and c are non-zero constants.

  • The curve passes through the point open parentheses negative 1 comma space 4 close parentheses

  • The gradient at the point open parentheses 2 comma space 7 close parentheses is 7

Find a, b and c.

5a4 marks

A curve has equation

y equals fraction numerator 2 x cubed minus 5 x squared minus 3 x over denominator 2 x plus 1 end fraction space space space space space space space space space space space space space x not equal to negative 1 half

Show that

fraction numerator d y over denominator d x end fraction equals a x plus b

where a and b are constants to be found.

5b5 marks

A different curve has equation

y equals open parentheses space square root of x plus 3 minus fraction numerator 4 over denominator square root of x end fraction close parentheses squared space space space space space space space space space space space space space x greater than 0

Show that

fraction numerator d y over denominator d x end fraction equals p plus q x to the power of alpha plus r x to the power of beta plus s x to the power of gamma

where alpha greater than beta greater than gamma and p comma space q comma space r comma space s comma space alpha comma space beta and gamma are constants to be found.