Deciding the Factorisation Method (Edexcel GCSE Maths) : Revision Note

Jamie Wood

Written by: Jamie Wood

Reviewed by: Dan Finlay

Updated on

Did this video help you?

Quadratics Factorising Methods

How do I know if an expression factorises?

  • The easiest way to check if ax2 + bx + c factorises is to check if you can find a pair of integers which:

    • Multiply to give ac

    • Sum to give b

    • If you can find integers to satisfy this, the expression must factorise

  • There are some alternate methods to check:

    • Method 1: Use a calculator to solve the quadratic expression equal to 0

      • Only some calculators have this functionality

      • If the solutions are integers or fractions (without square roots), then the quadratic expression will factorise

    • Method 2: Find the value under the square root in the quadratic formula

      • b2 – 4ac

      • If this number is a square number, then the quadratic expression will factorise

Which factorisation method should I use for a quadratic expression?

  • Does it have 2 terms only?

    • Yes, like x squared minus 7 x

      • Factorise out the highest common factor, x

      • x open parentheses x minus 7 close parentheses

    • Yes, like x squared minus 9

      • Use the "difference of two squares" to factorise

      • open parentheses x plus 3 close parentheses open parentheses x minus 3 close parentheses

Does it have 3 terms?

  • Yes, starting with x2 like x squared minus 3 x minus 10

    • Use "factorising simple quadratics" by finding two numbers that add to -3 and multiply to -10

    • open parentheses x plus 2 close parentheses open parentheses x minus 5 close parentheses

  • Yes, starting with ax2 like 3 x squared plus 15 x plus 18

    • Check to see if the 3 in front of x2 is a common factor for all three terms (which it is in this case), then factorise it out of all three terms

    • 3 open parentheses x squared plus 5 x plus 6 close parentheses

    • The quadratic expression inside the brackets is now x2 +... , which factorises more easily

    • 3 open parentheses x plus 2 close parentheses open parentheses x plus 3 close parentheses

  • Yes, starting with ax2 like 3 x squared minus 5 x minus 2

    • The 3 in front of x2 is not a common factor for all three term

    • Use "factorising harder quadratics", for example factorising by grouping or factorising using a grid

    • open parentheses 3 x plus 1 close parentheses open parentheses x minus 2 close parentheses

What other expressions should I be able to factorise?

  • You may have a cubed term like x cubed minus 3 x squared minus 10 x

    • Check to see if x is a common factor for all three terms (which it is in this case), so factorise it out of all three terms

    • x open parentheses x squared minus 3 x minus 10 close parentheses

    • The remaining quadratic can then be factorised

    • x open parentheses x plus 2 close parentheses open parentheses x minus 5 close parentheses

  • It can also be useful to spot a quadratic in the form x squared plus 2 a x plus a squared

    • This factorises to open parentheses x plus a close parentheses squared

    • E.g. x squared plus 6 x plus 9 space equals space open parentheses x plus 3 close parentheses squared

Examiner Tips and Tricks

  • A common mistake in the exam is to divide expressions by numbers, e.g. 2 x squared plus 4 x plus 2 becomes x squared plus 2 x plus 1 (which is incorrect)

    • This can only be done with equations

    • e.g. 2 x squared plus 4 x plus 2 equals 0 becomes x squared plus 2 x plus 1 equals 0 (dividing "both sides" by 2)

Worked Example

Factorise  negative 8 x squared plus 100 x minus 48.

Spot the common factor of -4 and factorise it out

negative 8 x squared plus 100 x minus 48 equals negative 4 open parentheses 2 x squared minus 25 x plus 12 close parentheses

Check to see if the quadratic in the bracket will factorise using b squared minus 4 a c

table row blank blank cell open parentheses negative 25 close parentheses squared minus open parentheses 4 cross times 2 cross times 12 close parentheses end cell row blank equals cell 625 minus 96 end cell row blank equals 529 end table

529 is a square number (232) so the expression will factorise

Factorise 2 x squared minus 25 x plus 12

We require a pair of numbers which multiply to ac, and sum to b

a cross times c equals 2 cross times 12 equals 24

The only numbers which multiply to 24 and sum to -25 are

-24 and -1

Split the negative 25 x term into negative 24 x minus x

table row blank blank cell 2 x squared minus 24 x minus x plus 12 end cell end table

Group and factorise the first two terms, using 2 x as the common factor
Group and factorise the last two terms using negative 1 as the common factor

table row blank blank cell 2 x open parentheses x minus 12 close parentheses minus 1 open parentheses x minus 12 close parentheses end cell end table

These factorised terms now have a common term of open parentheses x minus 12 close parentheses, so this can be factorised out

open parentheses 2 x minus 1 close parentheses open parentheses x minus 12 close parentheses

Recall that -4 was factorised out at the start

negative 8 x squared plus 100 x minus 48 equals negative 4 open parentheses 2 x squared minus 25 x plus 12 close parentheses equals negative 4 open parentheses 2 x minus 1 close parentheses open parentheses x minus 12 close parentheses

Error converting from MathML to accessible text.

👀 You've read 1 of your 5 free revision notes this week
An illustration of students holding their exam resultsUnlock more revision notes. It's free!

By signing up you agree to our Terms and Privacy Policy.

Already have an account? Log in

Did this page help you?

Jamie Wood

Author: Jamie Wood

Expertise: Maths Content Creator

Jamie graduated in 2014 from the University of Bristol with a degree in Electronic and Communications Engineering. He has worked as a teacher for 8 years, in secondary schools and in further education; teaching GCSE and A Level. He is passionate about helping students fulfil their potential through easy-to-use resources and high-quality questions and solutions.

Dan Finlay

Reviewer: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.

Download notes on Deciding the Factorisation Method