Derivatives of Inverse Trigonometric Functions (College Board AP® Calculus AB) : Study Guide

Jamie Wood

Written by: Jamie Wood

Reviewed by: Dan Finlay

Updated on

Derivatives of inverse trigonometric functions

How do I differentiate inverse trig functions?

  • The inverse trigonometric functions (sin to the power of negative 1 end exponent x etc) can be differentiated using:

    • The inverse function theorem, written as either

      • fraction numerator d y over denominator d x end fraction equals fraction numerator 1 over denominator open parentheses fraction numerator d x over denominator d y end fraction close parentheses end fraction

      • or g to the power of apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator f to the power of apostrophe open parentheses g open parentheses x close parentheses close parentheses end fraction where g open parentheses x close parentheses equals f to the power of negative 1 end exponent open parentheses x close parentheses

    • The chain rule

    • Trigonometric identities

  • Note that you may also see inverse trig functions referred to with "arc" notation

    • E.g. sin to the power of negative 1 end exponent x equals arcsin space x

How do I differentiate inverse sine?

  • Using the inverse function theorem, g to the power of apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator f to the power of apostrophe open parentheses g open parentheses x close parentheses close parentheses end fraction where g open parentheses x close parentheses equals f to the power of negative 1 end exponent open parentheses x close parentheses

  • Let g open parentheses x close parentheses equals sin to the power of negative 1 end exponent x and f open parentheses x close parentheses equals sin space x

    • So f to the power of apostrophe open parentheses x close parentheses equals cos space x

  • g to the power of apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator f to the power of apostrophe open parentheses g open parentheses x close parentheses close parentheses end fraction equals fraction numerator 1 over denominator cos open parentheses sin to the power of negative 1 end exponent x close parentheses end fraction

  • Recall the identity sin squared x space plus space cos squared x identical to 1

    • This rearranges to cos space x equals square root of 1 minus sin squared x end root

  • Use this identity for the denominator

    • g to the power of apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator square root of 1 minus sin squared open parentheses sin to the power of negative 1 end exponent x close parentheses end root end fraction

    • sin squared open parentheses sin to the power of negative 1 end exponent x close parentheses is the same as open parentheses sin open parentheses sin to the power of negative 1 end exponent x close parentheses close parentheses squared equals open parentheses x close parentheses squared

    • g to the power of apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction

  • fraction numerator d over denominator d x end fraction open parentheses sin to the power of negative 1 end exponent x close parentheses equals fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction

  • This result is only true for when sin space x has an inverse

    • For purposes of defining the 'official' inverse of sin x, the domain of sin x is restricted to negative straight pi over 2 less or equal than x less or equal than straight pi over 2

    • The range of sin x is open square brackets negative 1 comma space 1 close square brackets, so the domain for sin to the power of negative 1 end exponent x must be negative 1 less or equal than x less or equal than 1 or open vertical bar x close vertical bar less or equal than 1

    • However the derivative of sin to the power of negative 1 end exponent x is only defined for negative 1 less than x less than 1 or open vertical bar x close vertical bar less than 1

      • This can be seen by inspecting the denominator of g to the power of apostrophe open parentheses x close parentheses

      • The derivative becomes unbounded for x equals 1 or x equals negative 1

How do I differentiate inverse cosine?

  • Using the inverse function theorem, g to the power of apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator f to the power of apostrophe open parentheses g open parentheses x close parentheses close parentheses end fraction where g open parentheses x close parentheses equals f to the power of negative 1 end exponent open parentheses x close parentheses

  • Let g open parentheses x close parentheses equals cos to the power of negative 1 end exponent x and f open parentheses x close parentheses equals cos space x

    • So f to the power of apostrophe open parentheses x close parentheses equals negative sin space x

  • g to the power of apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator f to the power of apostrophe open parentheses g open parentheses x close parentheses close parentheses end fraction equals fraction numerator 1 over denominator negative sin open parentheses cos to the power of negative 1 end exponent x close parentheses end fraction

  • Recall the identity sin squared x space plus space cos squared x identical to 1

    • This rearranges to sin space x equals square root of 1 minus cos squared x end root

  • Use this identity for the denominator

    • g to the power of apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator negative square root of 1 minus cos squared open parentheses cos to the power of negative 1 end exponent x close parentheses end root end fraction

    • cos squared open parentheses cos to the power of negative 1 end exponent open parentheses x close parentheses close parentheses is the same as open parentheses cos open parentheses cos to the power of negative 1 end exponent x close parentheses close parentheses squared equals open parentheses x close parentheses squared

    • g to the power of apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator negative square root of 1 minus x squared end root end fraction

  • fraction numerator d over denominator d x end fraction open parentheses cos to the power of negative 1 end exponent x close parentheses equals negative fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction

  • This result is only true for when cos space x has an inverse

    • For purposes of defining the 'official' inverse of cos x, the domain of cos x is restricted to 0 less or equal than x less or equal than straight pi

    • The range of cos x is open square brackets negative 1 comma space 1 close square brackets, so the domain for cos to the power of negative 1 end exponent x must be negative 1 less or equal than x less or equal than 1 or open vertical bar x close vertical bar less or equal than 1

    • However the derivative of cos to the power of negative 1 end exponent x is only defined for negative 1 less than x less than 1 or open vertical bar x close vertical bar less than 1

      • This can be seen by inspecting the denominator of g to the power of apostrophe open parentheses x close parentheses

      • The derivative becomes unbounded for x equals 1 or x equals negative 1

How do I differentiate inverse tangent?

  • Using the inverse function theorem, g to the power of apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator f to the power of apostrophe open parentheses g open parentheses x close parentheses close parentheses end fraction where g open parentheses x close parentheses equals f to the power of negative 1 end exponent open parentheses x close parentheses

  • Let g open parentheses x close parentheses equals tan to the power of negative 1 end exponent x and f open parentheses x close parentheses equals tan space x

    • So f to the power of apostrophe open parentheses x close parentheses equals sec squared x

  • g to the power of apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator f to the power of apostrophe open parentheses g open parentheses x close parentheses close parentheses end fraction equals fraction numerator 1 over denominator sec squared open parentheses tan to the power of negative 1 end exponent x close parentheses end fraction

  • Recall the identity tan squared x space plus space 1 identical to sec squared x

    • This can be derived from sin squared x space plus space cos squared x identical to 1 by dividing by cos squared x

  • Use this identity for the denominator

    • g to the power of apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator tan squared open parentheses tan to the power of negative 1 end exponent x close parentheses space plus space 1 end fraction

    • tan squared open parentheses tan to the power of negative 1 end exponent open parentheses x close parentheses close parentheses is the same as open parentheses tan open parentheses tan to the power of negative 1 end exponent x close parentheses close parentheses squared equals open parentheses x close parentheses squared

    • g to the power of apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator x squared plus 1 end fraction

  • fraction numerator d over denominator d x end fraction open parentheses tan to the power of negative 1 end exponent x close parentheses equals fraction numerator 1 over denominator 1 plus x squared end fraction

  • This result is only true for when tan space x has an inverse

    • For purposes of defining the 'official' inverse of tan x, the domain of tan x is restricted to negative straight pi over 2 less than x less than straight pi over 2

    • The range of tan x is open parentheses negative infinity comma space infinity close parentheses, i.e. all real numbers, so the domain for tan to the power of negative 1 end exponent x is all real numbers

    • The derivative of tan x is also defined for all real numbers x

      • The derivative goes to zero as x goes to plus-or-minus infinity

Summary of derivatives of inverse trig functions

  • The methods above show how to find the derivatives of the three most common inverse trig functions

  • The derivatives of the inverses of the reciprocal trig functions can be found in a similar way

  • The table below summarizes the derivatives of all six inverse trig functions

Table of derivatives of inverse trig functions

f open parentheses x close parentheses

f to the power of apostrophe open parentheses x close parentheses

sin to the power of negative 1 end exponent x

fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction, space minus 1 less than x less than 1

cos to the power of negative 1 end exponent x

negative fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction, space minus 1 less than x less than 1

tan to the power of negative 1 end exponent x

fraction numerator 1 over denominator 1 plus x squared end fraction

csc to the power of negative 1 end exponent x

negative fraction numerator 1 over denominator open vertical bar x close vertical bar square root of x squared minus 1 end root end fraction, space x less than negative 1 or x greater than 1

sec to the power of negative 1 end exponent x

fraction numerator 1 over denominator open vertical bar x close vertical bar square root of x squared minus 1 end root end fraction, space x less than negative 1 or x greater than 1

cot to the power of negative 1 end exponent x

negative fraction numerator 1 over denominator 1 plus x squared end fraction

Worked Example

Find the derivative of f open parentheses x close parentheses equals arcsin open parentheses 2 x cubed plus e to the power of 2 x end exponent close parentheses.

Answer:

Recall that arcsin x is the same as sin to the power of negative 1 end exponent x, you can use whichever notation you prefer

Differentiating this function will require the chain rule, as it is a function within a function

y equals sin to the power of negative 1 end exponent open parentheses 2 x cubed plus e to the power of 2 x end exponent close parentheses

Let u equals 2 x cubed plus e to the power of 2 x end exponent, so that y equals sin to the power of negative 1 end exponent u

Differentiate both functions

fraction numerator d u over denominator d x end fraction equals 6 x squared plus 2 e to the power of 2 x end exponent

fraction numerator d y over denominator d u end fraction equals fraction numerator 1 over denominator square root of 1 minus u squared end root end fraction

Apply the chain rule

fraction numerator d y over denominator d x end fraction equals fraction numerator d y over denominator d u end fraction cross times fraction numerator d u over denominator d x end fraction equals fraction numerator 1 over denominator square root of 1 minus u squared end root end fraction times open parentheses 6 x squared plus 2 e to the power of 2 x end exponent close parentheses

Substitute u back in

fraction numerator d y over denominator d x end fraction equals fraction numerator 1 over denominator square root of 1 minus open parentheses 2 x cubed plus e to the power of 2 x end exponent close parentheses squared end root end fraction times open parentheses 6 x squared plus 2 e to the power of 2 x end exponent close parentheses

f to the power of apostrophe open parentheses x close parentheses equals fraction numerator 6 x squared plus 2 e to the power of 2 x end exponent over denominator square root of 1 minus open parentheses 2 x cubed plus e to the power of 2 x end exponent close parentheses squared end root end fraction

👀 You've read 1 of your 5 free study guides this week
An illustration of students holding their exam resultsUnlock more study guides. It's free!

By signing up you agree to our Terms and Privacy Policy.

Already have an account? Log in

Did this page help you?

Jamie Wood

Author: Jamie Wood

Expertise: Maths Content Creator

Jamie graduated in 2014 from the University of Bristol with a degree in Electronic and Communications Engineering. He has worked as a teacher for 8 years, in secondary schools and in further education; teaching GCSE and A Level. He is passionate about helping students fulfil their potential through easy-to-use resources and high-quality questions and solutions.

Dan Finlay

Reviewer: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.

Download notes on Derivatives of Inverse Trigonometric Functions