Graphs of Polynomials (Edexcel IGCSE Further Pure Maths)

Revision Note

Dan Finlay

Written by: Dan Finlay

Reviewed by: Lucy Kirkham

Quadratic Functions & Graphs

What are the key features of quadratic graphs?

  • A quadratic graph can be written in the form y equals a x squared plus b x plus c where a not equal to 0

  • The shape of the graph is known as a parabola

  • The value of a affects the shape of the curve

    • If a is positive the shape is 'u-shaped'

    • If a is negative the shape is 'upside down u-shaped'

  • The y-intercept is at the point (0, c)

  • The roots are the solutions to a x squared plus b x plus c equals 0

    • These are also known as the x-intercepts or zeroes

    • They can be found by

      • Factorising

      • Quadratic formula

      • Completing the square

      • Your calculator may also be able to find these for you

    • There can be 0, 1 or 2 x-intercepts

      • This is determined by the value of the discriminant

  • There is an axis of symmetry at x equals negative fraction numerator b over denominator 2 a end fraction

    • If there are two x-intercepts then the axis of symmetry goes through the midpoint between them

  • The vertex lies on the axis of symmetry

    • It can be found by completing the square

    • The x-coordinate is x equals negative fraction numerator b over denominator 2 a end fraction

    • The y-coordinate can be found by calculating y when x equals negative fraction numerator b over denominator 2 a end fraction

    • If a is positive then the vertex is the minimum point

    • If a is negative then the vertex is the maximum point

Graphs of a quadratic
Key features of a quadratic

What are the equations of a quadratic function?

  • straight f left parenthesis x right parenthesis equals a x squared plus b x plus c

    • This is the general form

    • It clearly shows the y-intercept (0, c)

    • You can find the axis of symmetry by x equals negative fraction numerator b over denominator 2 a end fraction

  • straight f left parenthesis x right parenthesis equals a left parenthesis x minus p right parenthesis left parenthesis x minus q right parenthesis

    • This is the factorised form

    • It clearly shows the roots (p, 0) & (q, 0)

    • You can find the axis of symmetry by x equals fraction numerator p plus q over denominator 2 end fraction

  • straight f left parenthesis x right parenthesis equals a left parenthesis x minus h right parenthesis squared plus k

    • This is the vertex form (or completed square form)

    • It clearly shows the vertex (h, k)

    • The axis of symmetry is therefore x equals h

    • It clearly shows how the function can be transformed from the graph of y equals x squared

      • Vertical stretch by scale factor ­a

      • Translation by vector stretchy left parenthesis table row h row k end table stretchy right parenthesis

How do I find an equation of a quadratic?

  • If you have the roots x = p and x = q...

    • Write in factorised form space y equals a left parenthesis x minus p right parenthesis left parenthesis x minus q right parenthesis

    • You will need a third point to find the value of a

  • If you have the vertex (h, k) then...

    • Write in vertex form y equals a left parenthesis x minus h right parenthesis squared plus k

    • You will need a second point to find the value of a

  • If you have three random points (x1, y1), (x2, y2) & (x3, y3) then...

    • Write in the general form y equals a x squared plus b x plus c

    • Substitute the three points into the equation

    • Form and solve a system of three linear equations to find the values of a, b & c

Examiner Tips and Tricks

  • Your calculator may be able to find the roots and turning point of a quadratic function

    • Even on a 'show that' question this can be used to check your answers

Worked Example

The diagram below shows the graph of space y equals straight f left parenthesis x right parenthesis, where space straight f left parenthesis x right parenthesis is a quadratic function.

The vertex and the intercept with the y-axis have been labelled.

2-2-1-ib-aa-sl-we-image


Find an expression for space y equals f left parenthesis x right parenthesis.

Method 1

Since we know the vertex (turning point), it will be easiest to start with the completed square version of the equation 
This is  straight f left parenthesis x right parenthesis equals a left parenthesis x minus h right parenthesis squared plus k,  where the vertex is at open parentheses h comma space k close parentheses

table row cell straight f open parentheses x close parentheses end cell equals cell a open parentheses x minus open parentheses negative 1 close parentheses close parentheses squared plus 8 end cell row blank equals cell a open parentheses x plus 1 close parentheses squared plus 8 end cell end table

We also know the curve y equals straight f open parentheses x close parentheses goes through (0, 6)
Put those coordinates into the equation and solve for a

table row 6 equals cell a open parentheses 0 plus 1 close parentheses squared plus 8 end cell row 6 equals cell a plus 8 end cell row a equals cell negative 2 end cell end table

Substitute a equals negative 2 into the expression for straight f open parentheses x close parentheses
Expand the brackets and rearrange into the form required

table row cell straight f open parentheses x close parentheses end cell equals cell negative 2 open parentheses x plus 1 close parentheses squared plus 8 end cell row blank equals cell negative 2 open parentheses x squared plus 2 x plus 1 close parentheses plus 8 end cell row blank equals cell negative 2 x squared minus 4 x minus 2 plus 8 end cell end table

bold f begin bold style stretchy left parenthesis x stretchy right parenthesis end style bold equals bold minus bold 2 bold italic x to the power of bold 2 bold minus bold 4 bold italic x bold plus bold 6

Method 2

It is also possible to start with the y equals a x squared plus b x plus c form
Because the y-intercept is (0, 6) we know that c equals 6

Goes through open parentheses 0 comma space 6 close parentheses means  straight f open parentheses x close parentheses equals a x squared plus b x plus 6

It also goes through (-1, 8)
Substitute those coordinates into the equation of y equals f open parentheses x close parentheses

Goes through open parentheses negative 1 comma space 8 close parentheses means

table row 8 equals cell a open parentheses negative 1 close parentheses squared plus b open parentheses negative 1 close parentheses plus 6 end cell row 8 equals cell a minus b plus 6 end cell row cell a minus b end cell equals 2 end table

We need one more piece of information
You may remember that the turning point lies on the line  x equals negative fraction numerator b over denominator 2 a end fraction
If not, then use the fact that the x-coordinate of the turning point satisfies  straight f to the power of apostrophe open parentheses x close parentheses equals 0

Turning point at open parentheses negative 1 comma space 8 close parentheses means  straight f to the power of apostrophe open parentheses negative 1 close parentheses equals 0

Differentiate to find straight f to the power of apostrophe open parentheses x close parentheses
Then solve straight f to the power of apostrophe open parentheses negative 1 close parentheses equals 0 to find another equation with aand b

straight f to the power of apostrophe open parentheses x close parentheses equals 2 a x plus b

table row cell 2 a open parentheses negative 1 close parentheses plus b end cell equals 0 row cell negative 2 a plus b end cell equals 0 end table

We now have two simultaneous equations that we can solve to find a and b

table row cell a minus b end cell equals cell 2 space space space space open square brackets 1 close square brackets end cell row cell negative 2 a plus b end cell equals cell 0 space space space space open square brackets 2 close square brackets end cell end table

Add [1] and [2] together to eliminate b

table row cell negative a end cell equals 2 row a equals cell negative 2 end cell end table

Substitute into [2] and solve to find b

table row cell negative 2 open parentheses negative 2 close parentheses plus b end cell equals 0 row cell 4 plus b end cell equals 0 row b equals cell negative 4 end cell end table

Write final answer in form requested

bold f stretchy left parenthesis x stretchy right parenthesis bold equals bold minus bold 2 bold italic x to the power of bold 2 bold minus bold 4 bold italic x bold plus bold 6

Cubic Functions & Graphs

What are the key features of cubic graphs?

  • cubic graph can be written in the form  y equals a x cubed plus b x squared plus c x plus d  where