Problem Solving with Vectors (Cambridge (CIE) IGCSE Maths) : Revision Note

Jamie Wood

Written by: Jamie Wood

Reviewed by: Dan Finlay

Updated on

Did this video help you?

Vector Problem Solving

What are vector proofs?

  • Vectors can be used to prove things that are true in geometrical diagrams

    • Vector proofs can be used to find additional information that can help us to solve problems

How do I know if two vectors are parallel?

  • Two vectors are parallel if one is a scalar multiple of the other

    • This means if b is parallel to a, then b = ka

      •  where k is a constant number (scalar)

  • For example, bold a equals open parentheses table row 1 row 3 end table close parentheses and bold b equals open parentheses table row 2 row 6 end table close parentheses 

    • open parentheses table row 2 row 6 end table close parentheses equals 2 cross times open parentheses table row 1 row 3 end table close parentheses so bold b equals 2 bold a

    • b is a scalar multiple of a, so b is parallel to a

  • If the scalar multiple is negative, then the vectors are parallel and in opposite directions

    • bold c equals open parentheses table row cell negative 3 end cell row cell negative 9 end cell end table close parentheses equals negative 3 bold a

      • c is parallel to a and in the opposite direction

  • If two vectors factorise with a common bracket, then they are parallel

    • They can be written as scalar multiples 

  • For example

    • 9a + 6factorises to 3(3a + 2b)

    • 12a + 8factorises to 4(3a + 2b)

    • This means 12 bold a plus 8 bold b equals 4 over 3 open parentheses 9 bold a plus 6 bold b close parentheses

      • so they are scalar multiples of each other

      • and therefore parallel

How do I know if three points lie on a straight line?

  • You may be asked to prove that three points lie on a straight line

    • Points that lie on a straight line are collinear

  • To show that the points A , and are collinear

    • prove that two line segments are parallel

    • and show that there is at least one point that lies on both segments

      • This makes them parallel and connected (not parallel and side-by-side)

  • For example, if you show that stack B C with rightwards arrow on top equals 2 stack A B with rightwards arrow on top then

    • the line segments AB  and BC  are parallel

    • and they have a common point,

      • So A , and must be collinear

  • Similarly, stack A C with rightwards arrow on top equals 3 stack A B with rightwards arrow on top means AC  and AB  are parallel

    • and they have a common point, A

      • so A , and must be collinear

If A, B, C are collinear, AB is parallel to AC and BC

How do I use ratios in vector paths?

Vector line divided into a ratio
  • Convert ratios into fractions

  • In the example shown, if A X space colon space X B equals 3 colon 5 then

    • stack A X with rightwards arrow on top equals 3 over 8 stack A B with rightwards arrow on top

    • stack X B with italic rightwards arrow on top equals 5 over 8 stack A B with rightwards arrow on top

      • The ratio 3:5 has 3 + 5 = 8 parts

  • Always check which ratio you are being asked for

    • stack A X with italic rightwards arrow on top equals 3 over 5 stack X B with rightwards arrow on top

    • stack X B with rightwards arrow on top equals 5 over 3 stack A X with rightwards arrow on top

Worked Example

The diagram shows trapezium OABC.

stack O A with rightwards arrow on top equals 2 bold a

stack O C with rightwards arrow on top equals bold c

AB is parallel to OC, with stack A B with rightwards arrow on top equals 3 stack O C with rightwards arrow on top.

Question Vector Trapezium, IGCSE & GCSE Maths revision notes

(a) Find expressions for vectors stack O B with rightwards arrow on top and stack A C with rightwards arrow on top in terms of a and c.  

stack A B with rightwards arrow on top equals 3 stack O C with rightwards arrow on top and stack O C with rightwards arrow on top equals bold c  so  stack A B with rightwards arrow on top equals 3 bold italic c.

table row cell stack O B with rightwards arrow on top end cell equals cell stack O A with rightwards arrow on top plus stack A B with rightwards arrow on top space end cell row blank equals cell 2 bold a plus 3 bold c end cell end table

stack bold italic O bold italic B with bold rightwards arrow on top bold equals bold 2 bold a bold plus bold 3 bold c

table row cell stack A C with rightwards arrow on top end cell equals cell stack A O with rightwards arrow on top plus stack O C with rightwards arrow on top end cell row blank equals cell negative stack O A with rightwards arrow on top plus stack O C with rightwards arrow on top end cell row blank equals cell negative 2 bold a plus bold c end cell end table

stack bold italic A bold italic C with bold rightwards arrow on top bold equals bold italic c bold minus bold 2 bold italic a

(b) Point P lies on AC such that AP : PC = 3 : 1.

Find expressions for vectors stack A P with rightwards arrow on top and stack O P with rightwards arrow on top in terms of a and c

AP : PC = 3 : 1 means that  stack A P with rightwards arrow on top equals fraction numerator 3 over denominator 3 plus 1 end fraction stack A C with rightwards arrow on top equals 3 over 4 stack A C with rightwards arrow on top space

table row cell stack A P with rightwards arrow on top end cell equals cell 3 over 4 space stack A C with rightwards arrow on top equals 3 over 4 open parentheses negative 2 bold a space plus space bold c close parentheses end cell end table

stack bold italic A bold italic P with bold rightwards arrow on top bold equals bold minus bold 3 over bold 2 bold a bold plus bold 3 over bold 4 bold c

table row cell stack O P with rightwards arrow on top end cell equals cell stack O A with rightwards arrow on top plus stack A P with rightwards arrow on top end cell row blank equals cell 2 bold a plus stretchy left parenthesis negative 3 over 2 bold a plus 3 over 4 bold c stretchy right parenthesis end cell end table

stack bold italic O bold italic P with bold rightwards arrow on top bold equals bold 1 over bold 2 bold a bold plus bold 3 over bold 4 bold c

(c) Hence, prove that point P lies on line OB, and determine the ratio stack O P with rightwards arrow on top space colon space stack P B with rightwards arrow on top.

To show that O, P, and B are colinear (lie on the same line), note that  stack O P with rightwards arrow on top equals 1 half bold a plus 3 over 4 bold c equals 1 fourth open parentheses 2 bold a plus 3 bold c close parentheses

table row cell stack O P with rightwards arrow on top end cell equals cell 1 fourth open parentheses 2 bold a plus 3 bold c close parentheses equals 1 fourth stack O B with rightwards arrow on top end cell end table

stack bold italic O bold italic P with bold rightwards arrow on top bold space bold equals bold space bold 1 over bold 4 stack O B with italic rightwards arrow on top therefore OP is parallel to OB
and so P must lie on the line OB

If table row cell stack O P with rightwards arrow on top end cell equals cell 1 fourth stack O B with rightwards arrow on top space end cell end table then table row cell stack P B with rightwards arrow on top end cell equals cell 3 over 4 stack O B with rightwards arrow on top end cell end table

stack bold italic O bold italic P with bold rightwards arrow on top space bold colon bold space stack bold italic P bold italic B with bold rightwards arrow on top bold equals bold 1 bold space bold colon bold space bold 3

👀 You've read 1 of your 5 free revision notes this week
An illustration of students holding their exam resultsUnlock more revision notes. It's free!

By signing up you agree to our Terms and Privacy Policy.

Already have an account? Log in

Did this page help you?

Jamie Wood

Author: Jamie Wood

Expertise: Maths Content Creator

Jamie graduated in 2014 from the University of Bristol with a degree in Electronic and Communications Engineering. He has worked as a teacher for 8 years, in secondary schools and in further education; teaching GCSE and A Level. He is passionate about helping students fulfil their potential through easy-to-use resources and high-quality questions and solutions.

Dan Finlay

Reviewer: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.

Download notes on Problem Solving with Vectors