Definite Integrals (DP IB Analysis & Approaches (AA)): Revision Note

Did this video help you?

Definite Integrals

What is a definite integral?

  • A definite integral is written in the form integral subscript a superscript b f left parenthesis x right parenthesis space straight d x, where

    • space f left parenthesis x right parenthesis is the integrand (function to be integrated)

    • a and b are the integration limits

      • a is the lower limit, and b is the upper limit

      • These correspond to the lines x equals a and x equals b in the area under a curve

  • According to the Fundamental Theorem of Calculus, if F left parenthesis x right parenthesis is an antiderivative ofspace f left parenthesis x right parenthesis, then

integral subscript a superscript b f left parenthesis x right parenthesis space straight d x equals F left parenthesis b right parenthesis minus F left parenthesis a right parenthesis

  • The constant of integration (“plus c”) is not needed in definite integration

    • "plus c” would appear alongside both F(a) and F(b)

    • Then subtracting means the “plus c”’s would cancel

How do I find definite integrals analytically (manually)?

  • STEP 1

    Give the integral a name to save having to rewrite the whole integral every time

    If need be, rewrite the integral into an integrable form

    • E.g.space space I equals integral subscript 1 superscript 2 3 x squared space straight d x

  • STEP 2

    Integrate without applying the limits; you will not need “+c
    Notation: use square brackets [ ] with limits placed at the end bracket

    • E.g.space space I equals open square brackets x cubed close square brackets subscript 1 superscript 2 

  •  STEP 3

    Substitute the limits into the function and evaluate

    • E.g.space space I equals open parentheses 2 close parentheses cubed minus open parentheses 1 close parentheses cubed equals 8 minus 1 equals 7 

Examiner Tips and Tricks

Even if you evaluate a definite integral manually, it is always good practice to check your answer by using your GDC if you have it in the exam.

Worked Example

a) Show that

integral subscript 2 superscript 4 3 x left parenthesis x squared minus 2 right parenthesis space straight d x equals 144

 

5-4-3-ib-sl-aa-only-we1-soltn-a

b) Use your GDC to evaluate

space integral subscript 0 superscript 1 3 straight e to the power of x squared sin space x end exponent space straight d x

giving your answer to three significant figures.

5-4-3-ib-sl-aa-only-we1-soltn-b

Did this video help you?

Properties of Definite Integrals

Fundamental Theorem of Calculus

  • According to the Fundamental Theorem of Calculus

space integral subscript a superscript b f left parenthesis x right parenthesis space d x equals stretchy left square bracket F left parenthesis x right parenthesis stretchy right square bracket subscript a superscript b equals F left parenthesis b right parenthesis minus F left parenthesis a right parenthesis

  • In that equation

    • space f left parenthesis x right parenthesis must be continuous in the intervalspace a less or equal than x less or equal than b

    • space F left parenthesis x right parenthesisis an antiderivative ofspace straight f left parenthesis x right parenthesis

What are the properties of definite integrals?

  • Some of these have been encountered already (and some may seem obvious)

  • Taking constant factors outside the integral

    • integral subscript a superscript b k f left parenthesis x right parenthesis space straight d x equals k integral subscript a superscript b f left parenthesis x right parenthesis space straight d x wherespace k is a constant

      • useful when fractional and/or negative values are involved

  • Integrating term by term

    • space integral subscript a superscript b left square bracket f left parenthesis x right parenthesis plus-or-minus g left parenthesis x right parenthesis right square bracket space straight d x equals integral subscript a superscript b f left parenthesis x right parenthesis space straight d x plus-or-minus integral subscript a superscript b g left parenthesis x right parenthesis space straight d x

  • Equal upper and lower limits

    • integral subscript a superscript a f left parenthesis x right parenthesis space d x equals 0

      • Because F open parentheses a close parentheses minus F open parentheses a close parentheses equals 0

  • Swapping limits gives the negative of the original result

    • integral subscript b superscript a f left parenthesis x right parenthesis space straight d x equals negative integral subscript a superscript b f left parenthesis x right parenthesis space straight d x 

      • Because F open parentheses a close parentheses minus F open parentheses b close parentheses equals negative open parentheses F open parentheses b close parentheses minus F open parentheses a close parentheses close parentheses

  • Splitting the interval

    • space integral subscript a superscript b f left parenthesis x right parenthesis space straight d x equals integral subscript a superscript c f left parenthesis x right parenthesis space straight d x plus integral subscript c superscript b f left parenthesis x right parenthesis space straight d x wherespace a less or equal than c less or equal than b

      • This is particularly useful for areas under multiple curves or areas partly under thespace x-axis

  • Horizontal translations

    • space integral subscript a superscript b f left parenthesis x right parenthesis space straight d x equals integral subscript a minus k end subscript superscript b minus k end superscript f left parenthesis x plus k right parenthesis space straight d x wherespace k is a constant

      • The graph ofspace y equals f left parenthesis x plus k right parenthesis is a horizontal translation of the graph ofspace y equals f left parenthesis x right parenthesis
        (k greater than 0 translates left, k less than 0 translates right)

Summary of properties of definite integrals:

integral subscript a superscript b k f left parenthesis x right parenthesis space straight d x equals k integral subscript a superscript b f left parenthesis x right parenthesis space straight d x

space integral subscript a superscript b left square bracket f left parenthesis x right parenthesis plus-or-minus g left parenthesis x right parenthesis right square bracket space straight d x equals integral subscript a superscript b f left parenthesis x right parenthesis space straight d x plus-or-minus integral subscript a superscript b g left parenthesis x right parenthesis space straight d x

integral subscript a superscript a f left parenthesis x right parenthesis space d x equals 0

integral subscript b superscript a f left parenthesis x right parenthesis space straight d x equals negative integral subscript a superscript b f left parenthesis x right parenthesis space straight d x

space integral subscript a superscript b f left parenthesis x right parenthesis space straight d x equals integral subscript a superscript c f left parenthesis x right parenthesis space straight d x plus integral subscript c superscript b f left parenthesis x right parenthesis space straight d x

space integral subscript a superscript b f left parenthesis x right parenthesis space straight d x equals integral subscript a minus k end subscript superscript b minus k end superscript f left parenthesis x plus k right parenthesis space straight d x

Examiner Tips and Tricks

Knowing the properties of definite integrals can help to save time in the exam.

Worked Example

space f left parenthesis x right parenthesis is a continuous function in the intervalspace 5 less or equal than x less or equal than 15 .

It is known thatspace integral subscript 5 superscript 10 f left parenthesis x right parenthesis space straight d x equals 12 and thatspace integral subscript 10 superscript 15 f left parenthesis x right parenthesis space straight d x equals 5.

 

a) Write down the values of

i) space integral subscript 7 superscript 7 f left parenthesis x right parenthesis space straight d x

ii) space integral subscript 10 superscript 5 f left parenthesis x right parenthesis space straight d x

 

5-4-3-ib-sl-aa-only-we2-soltn-a

b) Find the values of

i) space integral subscript 5 superscript 15 f left parenthesis x right parenthesis space straight d x

ii) space integral subscript 5 superscript 10 6 f left parenthesis x plus 5 right parenthesis space straight d x

5-4-3-ib-sl-aa-only-we2-soltn-b


You've read 0 of your 5 free revision notes this week

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Paul

Author: Paul

Expertise: Maths Content Creator

Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams.

Dan Finlay

Reviewer: Dan Finlay

Expertise: Maths Subject Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.