De Moivre's Theorem (DP IB Analysis & Approaches (AA)): Revision Note

Did this video help you?

De Moivre's Theorem

What is De Moivre’s Theorem?

  • De Moivre’s theorem can be used to find powers of complex numbers

  • It states that forspace z space equals space r space cis space theta,  z to the power of n space equals space left square bracket r blank left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right square bracket to the power of n blank equals r to the power of n left parenthesis cos invisible function application n theta plus isin invisible function application n theta right parenthesis blank

    • Where

      • z ≠ 0

      • r is the modulus, |z|, r ∈ ℝ+

      • θ  is the argument, arg z, θ ∈ ℝ

      • n ∈ ℝ

  • In Euler’s form this is simply:

    • open parentheses r straight e to the power of straight i theta end exponent close parentheses to the power of n equals blank r to the power of n straight e to the power of straight i n theta end exponent

  • In words de Moivre’s theorem tells us to raise the modulus by the power of n and multiply the argument by n

  • In the formula booklet de Moivre’s theorem is given in both polar and Euler’s form:

    • left square bracket r left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right square bracket to the power of n equals r to the power of n left parenthesis cos invisible function application n theta plus isin invisible function application n theta right parenthesis equals r to the power of n straight e to the power of straight i n theta end exponent equals r to the power of n blank cis blank n theta blank

How do I use de Moivre’s Theorem to raise a complex number to a power?

  • If a complex number is in Cartesian form you will need to convert it to either modulus-argument (polar) form or exponential (Euler’s) form first

    • This allows de Moivre’s theorem to be used on the complex number

  • You may need to convert it back to Cartesian form afterwards

  • If a complex number is in the form z equals r open parentheses cos invisible function application open parentheses theta close parentheses minus isin invisible function application open parentheses theta close parentheses close parentheses then you will need to rewrite it as z equals r open parentheses cos invisible function application open parentheses negative theta close parentheses plus isin invisible function application open parentheses negative theta close parentheses close parenthesesbefore applying de Moivre’s theorem

  • A useful case of de Moivre’s theorem allows us to easily find the reciprocal of a complex number:

    •  1 over z equals 1 over r left parenthesis cos invisible function application left parenthesis negative theta right parenthesis plus isin invisible function application left parenthesis negative theta right parenthesis equals 1 over r straight e to the power of negative straight i theta end exponent blank

    • Using the trig identities cos(-θ) = cos(θ) and sin(-θ) = - sin(θ) gives

    • 1 over z equals z to the power of negative 1 end exponent equals r to the power of negative 1 end exponent left square bracket cos invisible function application open parentheses theta close parentheses minus isin invisible function application open parentheses theta close parentheses right square bracket equals blank 1 over r left square bracket cos invisible function application open parentheses theta close parentheses minus isin invisible function application left parenthesis theta right parenthesis right square bracket

  • In general

    • z to the power of negative n end exponent equals r to the power of negative n end exponent left square bracket cos invisible function application open parentheses negative n theta close parentheses plus isin invisible function application open parentheses negative n theta close parentheses right square bracket equals blank r to the power of negative n end exponent left square bracket cos invisible function application open parentheses n theta close parentheses minus isin invisible function application open parentheses n theta close parentheses right square bracket blank blank blank

 

Examiner Tips and Tricks

  • You may be asked to find all the powers of a complex number, this means there will be a repeating pattern

    • This can happen if the modulus of the complex number is 1

    • Keep an eye on your answers and look for the point at which they begin to repeat themselves 

Worked Example

Find the value of begin mathsize 16px style open parentheses fraction numerator square root of 3 over denominator 6 end fraction plus 1 over 6 straight i close parentheses to the power of negative 3 end exponent end style,  giving your answer in the form a + bi.

o~JlLuvG_1-9-3-ib-aa-hl-de-moivres-theorem-we-solution-1

You've read 0 of your 5 free revision notes this week

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Amber

Author: Amber

Expertise: Maths Content Creator

Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.

Download notes on De Moivre's Theorem