Reciprocal & Square Transformations (DP IB Analysis & Approaches (AA)) : Revision Note

Dan Finlay

Last updated

Reciprocal Transformations

What effects do reciprocal transformations have on the graphs?

  • The x-coordinates stay the same

  • The y-coordinates change

    • Their values become their reciprocals

  • The coordinates (x, y) become open parentheses x comma 1 over y close parentheses where y ≠ 0

    • If y = 0 then a vertical asymptote goes through the original coordinate

    • Points that lie on the line y = 1 or the line y = -1 stay the same

How do I sketch the graph of the reciprocal of a function: y = 1/f(x)?

  • Sketch the reciprocal transformation by considering the different features of the original graph

  • Consider key points on the original graph

    • If (x1, y1) is a point on y = f(x) where y1 ≠ 0

      • open parentheses x subscript 1 comma 1 over y subscript 1 close parentheses is a point on y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction

      • If |y1| < 1 then the point gets further away from the x-axis

      • If |y1| > 1 then the point gets closer to the x-axis

    • If y = f(x) has a y-intercept at (0, c) where c ≠ 0

      • The reciprocal graph y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction has a y-­intercept at open parentheses 0 comma 1 over c close parentheses

    • If y = f(x) has a root at (a, 0)

      • The reciprocal graph y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction has a vertical asymptote at x equals a

    • If y = f(x) has a vertical asymptote at x equals a

      • The reciprocal graph y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction has a discontinuity at (a, 0) 

      • The discontinuity will look like a root

    • If y = f(x) has a local maximum at (x1, y1) where y1 ≠ 0

      • The reciprocal graph y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction has a local minimum at open parentheses x subscript 1 comma 1 over y subscript 1 close parentheses

    • If y = f(x) has a local minimum at (x1, y1) where y1 ≠ 0

      • The reciprocal graph y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction has a local maximum at open parentheses x subscript 1 comma 1 over y subscript 1 close parentheses

  • Consider key regions on the original graph

    • If y = f(x) is positive then y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction is positive

      • If y = f(x) is negative then y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction is negative

    • If y = f(x) is increasing then y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction is decreasing

      • If y = f(x) is decreasing then y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction is increasing

    • If y = f(x) has a horizontal asymptote at y =

      • y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction has a horizontal asymptote at y equals 1 over k if k ≠ 0

      • y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction tends to ± ∞ if k = 0

    • If y = f(x) tends to ± ∞ as tends to +∞ or -∞

      • y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction has a horizontal asymptote at y equals 0

Worked Example

The diagram below shows the graph of y equals f left parenthesis x right parenthesis which has a local maximum at the point A.

2-9-2-we-image

Sketch the graph of .y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction.

2-9-2-ib-aa-hl-reciprocal-trans-we-solution

Square Transformations

What effects do square transformations have on the graphs?

  • The effects are similar to the transformation y = |f(x)|

    • The parts below the x-axis are reflected

    • The vertical distance between a point and the x-axis is squared

      • This has the effect of smoothing the curve at the x-axis

  • y equals open square brackets f open parentheses x close parentheses close square brackets squared is never below the x-axis

  • The x-coordinates stay the same

  • The y-coordinates change

    • Their values are squared

  • The coordinates (x, y) become (x, )

    • Points that lie on the x-axis or the line y = 1 stay the same

How do I sketch the graph of the square of a function: y = [f(x)]²?

  • Sketch the square transformation by considering the different features of the original graph

  • Consider key points on the original graph

    • If (x1, y1) is a point on y = f(x)

      •  open parentheses x subscript 1 comma y subscript 1 squared close parentheses is a point on y equals open square brackets f open parentheses x close parentheses close square brackets squared

      • If |y1| < 1 then the point gets closer to the x-axis

      • If |y1| > 1 then the point gets further away from the x-axis

    • If y = f(x) has a y-intercept at (0, c)

      • The square graph y equals open square brackets f open parentheses x close parentheses close square brackets squared has a y-­intercept at left parenthesis 0 comma c squared right parenthesis

    • If y = f(x) has a root at (a, 0)

      • The square graph  y equals open square brackets f open parentheses x close parentheses close square brackets squared has a root and turning point at (a, 0)

    • If y = f(x) has a vertical asymptote at x equals a

      • The square graph y equals open square brackets f open parentheses x close parentheses close square brackets squared has a vertical asymptote at x equals a

    • If y = f(x) has a local maximum at (x1, y1)

      • The square graph  y equals open square brackets f open parentheses x close parentheses close square brackets squared has a local maximum at (x1, y12) if y1 > 0

      • The square graph y equals open square brackets f open parentheses x close parentheses close square brackets squared  has a local minimum at (x1, y12) if y1 ≤ 0

    • If y = f(x) has a local minimum at (x1, y1)

      • The square graph y equals open square brackets f open parentheses x close parentheses close square brackets squared  has a local minimum at (x1, y12) if y1 ≥ 0

      • The square graph  y equals open square brackets f open parentheses x close parentheses close square brackets squared has a local maximum at (x1, y12) if y1 < 0

Examiner Tips and Tricks

  • In an exam question when sketching y equals open square brackets f left parenthesis x right parenthesis close square brackets squared make it clear that the points where the new graph touches the x-axis are smooth

    • This will make it clear to the examiner that you understand the difference between the roots of the graphs y equals open vertical bar f left parenthesis x right parenthesis close vertical bar and y equals open square brackets f left parenthesis x right parenthesis close square brackets squared

Worked Example

The diagram below shows the graph of y equals f left parenthesis x right parenthesis which has a local maximum at the point A.

2-9-2-we-image

Sketch the graph of y equals open square brackets f open parentheses x close parentheses close square brackets squared.

2-9-2-ib-aa-hl-square-trans-we-solution
👀 You've read 1 of your 5 free revision notes this week
An illustration of students holding their exam resultsUnlock more revision notes. It's free!

By signing up you agree to our Terms and Privacy Policy.

Already have an account? Log in

Did this page help you?

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.

Download notes on Reciprocal & Square Transformations