Proof of De Moivre's Theorem (DP IB Analysis & Approaches (AA)): Revision Note

Did this video help you?

Proof of De Moivre's Theorem

How is de Moivre’s Theorem proved?

  • When written in Euler’s form the proof of de Moivre’s theorem is easy to see:

    • Using the index law of brackets: open parentheses r straight e to the power of straight i theta end exponent close parentheses to the power of n equals blank r to the power of n straight e to the power of straight i n theta end exponent

  • However Euler’s form cannot be used to prove de Moivre’s Theorem when it is in modulus-argument (polar) form

  • Proof by induction can be used to prove de Moivre’s Theorem for positive integers:

    • To prove de Moivre’s Theorem for all positive integers, n

    • left square bracket r blank left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right square bracket to the power of n equals r to the power of n left parenthesis cos invisible function application n theta plus isin invisible function application n theta right parenthesis

  • STEP 1: Prove it is true for n = 1

    • left square bracket r blank left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right square bracket to the power of 1 equals r to the power of 1 left parenthesis cos invisible function application 1 theta plus isin invisible function application 1 theta right parenthesis equals blank r blank left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis blank

    • So de Moivre’s Theorem is true for n = 1

  • STEP 2: Assume it is true for n = k

    • left square bracket r blank left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right square bracket to the power of k equals r to the power of k left parenthesis cos invisible function application k theta plus isin invisible function application k theta right parenthesis blank

  • STEP 3: Show it is true for n = k + 1

    • left square bracket r blank left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right square bracket to the power of k plus blank 1 end exponent equals left parenthesis left square bracket r blank left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right square bracket to the power of k right parenthesis left parenthesis left square bracket r blank left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right square bracket to the power of 1 right parenthesis blank

    • According to the assumption this is equal to

      • left parenthesis r to the power of k left parenthesis cos invisible function application k theta plus isin invisible function application k theta right parenthesis right parenthesis blank left parenthesis r blank left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right parenthesis

    • Using laws of indices and multiplying out the brackets:

      • equals blank r to the power of k plus 1 end exponent left square bracket cos invisible function application k theta cos invisible function application theta plus icos space k theta space sin invisible function application theta plus isin invisible function application k theta cos invisible function application theta plus straight i squared sin invisible function application k theta sin invisible function application theta right square bracket

    • Letting i2 = -1 and collecting the real and imaginary parts gives:

      • equals blank r to the power of k plus 1 end exponent left square bracket cos invisible function application k theta cos invisible function application theta minus sin invisible function application k theta sin invisible function application theta plus straight i left parenthesis cos space k theta space sin invisible function application theta plus sin invisible function application k theta cos invisible function application theta right parenthesis right square bracket

    • Recognising that the real part is equivalent to cos( + θ ) and the imaginary part is equivalent to sin( + θ ) gives

      • open parentheses r blank cis blank straight theta close parentheses to the power of k plus 1 end exponent equals r to the power of k plus 1 end exponent left square bracket cos invisible function application open parentheses k plus 1 close parentheses theta plus isin invisible function application invisible function application open parentheses k plus 1 close parentheses theta right square bracket blank

    • So de Moivre’s Theorem is true for n = k + 1

  • STEP 4: Write a conclusion to complete the proof

    • The statement is true for n = 1, and if it is true for n = k it is also true for n = k + 1

    • Therefore, by the principle of mathematical induction, the result is true for all positive integers, n

  • De Moivre’s Theorem works for all real values of n

    • However you could only be asked to prove it is true for positive integers

Examiner Tips and Tricks

  • Learning the standard proof for de Moivre's theorem will also help you to memorise the steps for proof by induction, another important topic for your AA HL exam 

Worked Example

Show, using proof by mathematical induction, that for a complex number z = r cisθ  and for all positive integers, n,

z to the power of n space equals space left square bracket r blank left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right square bracket to the power of n blank equals r to the power of n left parenthesis cos invisible function application n theta plus isin invisible function application n theta right parenthesis

1-9-3-ib-aa-hl-proof-of-de-moivres-theorem-we-solution

You've read 0 of your 5 free revision notes this week

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Amber

Author: Amber

Expertise: Maths Content Creator

Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.