Modulus Transformations (DP IB Analysis & Approaches (AA)): Revision Note

Dan Finlay

Written by: Dan Finlay

Reviewed by: Mark Curtis

Updated on

Modulus transformations

How do I sketch the modulus of a function y = |f(x)|?

  • To sketch y equals vertical line f open parentheses x close parentheses vertical line

    • STEP 1
      Sketch the parts of y equals f open parentheses x close parentheses that are on or above the x-axis

    • STEP 2
      Sketch the reflections in the x-axis of any parts below

Graph showing the function y=f(x) in black, with steps to create y=|f(x)| in green. Step 1: Draw y=f(x). Step 2: Reflect below x-axis.

Examiner Tips and Tricks

No part of the graph y equals vertical line f open parentheses x close parentheses vertical line should be below the x-axis.

How do I sketch a function of mod x, y = f(|x|)?

  • To sketch y equals f open parentheses vertical line x vertical line close parentheses

    • STEP 1
      Keep the part of y equals f open parentheses x close parentheses on, or to the right of, the y-axis

      • get rid of any part that is to the left

    • STEP 2

      Reflect the right-hand side in the y-axis to create a left-hand side

      • This will create a symmetric graph about the y-axis

What are some differences between y = |f(x)| or y = f(|x|)?

  • It helps to remember that

    • y equals vertical line f open parentheses x close parentheses vertical line can never go below the x-axis

      • whereas y equals f open parentheses vertical line x vertical line close parentheses can

    • y equals f open parentheses vertical line x vertical line close parentheses is always symmetric about the y-axis

      • whereas y equals vertical line f open parentheses x close parentheses vertical line does not have to have any lines of symmetry

How do I sketch transformations of y = |f(x)|?

  • To sketch y equals open vertical bar a f left parenthesis x right parenthesis plus b close vertical bar

    • first sketch y equals f open parentheses x close parentheses without modulus signs

    • then apply a vertical stretch of scale factor a

      • y equals a f open parentheses x close parentheses

    • followed by a vertical translation of b

      • y equals a f open parentheses x close parentheses plus b

    • then take the modulus (using the rules above)

      • y equals open vertical bar a f left parenthesis x right parenthesis plus b close vertical bar

  • To sketch y equals a vertical line f open parentheses x close parentheses vertical line plus b

    • sketch y equals vertical line f open parentheses x close parentheses vertical line (as above)

    • then apply a vertical stretch of scale factor a

      • y equals a vertical line f open parentheses x close parentheses vertical line

    • followed by a vertical translation of b

      • y equals a vertical line f open parentheses x close parentheses vertical line plus b

How do I sketch transformations of y = f(|x|)?

  • To sketch y equals a f open parentheses vertical line x vertical line close parentheses plus b

    • sketch y equals f open parentheses vertical line x vertical line close parentheses (using the rules above)

    • then apply a vertical stretch of scale factor a

      • y equals a f open parentheses vertical line x vertical line close parentheses

    • followed by a vertical translation of b

      • y equals a f open parentheses vertical line x vertical line close parentheses plus b

How do I sketch y = |f(ax+b)| or y = f(|ax+b|)?

  • To sketch y equals vertical line f open parentheses a x plus b close parentheses vertical line

    • first sketch y equals f open parentheses a x plus b close parentheses which factorises to y equals f open parentheses a open parentheses x plus b over a close parentheses close parentheses

      • i.e. first apply a horizontal stretch to y equals f open parentheses x close parentheses of scale factor 1 over a

      • y equals f open parentheses x close parentheses becomes y equals f open parentheses a x close parentheses

      • followed by a horizontal translation of b over a to the left, open parentheses table row cell negative b over a end cell row 0 end table close parentheses

      • i.e. y equals f open parentheses a x close parentheses becomes y equals f open parentheses a open parentheses x plus b over a close parentheses close parentheses which is y equals f open parentheses a x plus b close parentheses

    • then take the modulus of y equals f open parentheses a x plus b close parentheses using the rules above

      • y equals vertical line f open parentheses a x plus b close parentheses vertical line

  • To sketch y equals f open parentheses vertical line a x plus b vertical line close parentheses

    • factorise it to f open parentheses vertical line a vertical line open vertical bar x plus b over a close vertical bar close parentheses

      • i.e. first apply a horizontal stretch of scale factor fraction numerator 1 over denominator vertical line a vertical line end fraction to y equals f open parentheses vertical line x vertical line close parentheses

      • y equals f open parentheses vertical line x vertical line close parentheses becomes y equals f open parentheses vertical line a vertical line vertical line x vertical line close parentheses

      • followed by a horizontal translation of b over a to the left, open parentheses table row cell negative b over a end cell row 0 end table close parentheses

      • i.e. y equals f open parentheses vertical line a vertical line vertical line x vertical line close parentheses becomes f open parentheses vertical line a vertical line open vertical bar x plus b over a close vertical bar close parentheses which is y equals f open parentheses vertical line a x plus b vertical line close parentheses

Examiner Tips and Tricks

When sketching transformed modulus graphs, make sure the corners (cusps) where parts of the graph have been reflected are drawn sharply.

Worked Example

The diagram below shows the graph of y equals f left parenthesis x right parenthesis .

2-9-1-we-diagram

(a) Sketch the graph of space y equals open vertical bar f open parentheses x close parentheses close vertical bar.

2-9-1-ib-aa-hl-modulus-trans-a-we-solution

(b) Sketch the graph of space y equals f left parenthesis open vertical bar x close vertical bar right parenthesis  .

2-9-1-ib-aa-hl-modulus-trans-b-we-solution

You've read 0 of your 5 free revision notes this week

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Dan Finlay

Author: Dan Finlay

Expertise: Maths Subject Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.

Mark Curtis

Reviewer: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.