Integrating Trigonometric, Exponential & Reciprocal Functions (DP IB Analysis & Approaches (AA)): Revision Note

Did this video help you?

Integrating Trig Functions

How do I integrate sin, cos and sec^2?

  • The antiderivatives for sine and cosine are

bold space bold integral bold sin bold italic x bold space bold d bold italic x bold equals bold minus bold cos bold italic x bold plus bold italic c

bold space bold integral bold cos bold italic x bold space bold d bold italic x bold equals bold sin bold italic x bold plus bold italic c

wherebold space bold italic c is the constant of integration

  • Also, from the derivative ofspace tan space x

bold space bold integral bold sec to the power of bold 2 bold italic x bold space bold d bold italic x bold equals bold tan bold italic x bold plus bold italic c

Examiner Tips and Tricks

The standard integrals ofspace sin x and cos x are both in the exam formula booklet.

The integral for sec squared x is not in the formula booklet. However the derivative result f open parentheses x close parentheses equals tan x space rightwards double arrow space f to the power of apostrophe open parentheses x close parentheses equals sec squared x is in the formula booklet, so that can be used 'the other way round' to deduce the antiderivative.

  • For the linear functionbold space bold italic a bold italic x bold plus bold italic b, wherespace bold italic a andspace bold italic b are constants,

bold space bold integral bold sin bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis bold space bold d bold italic x bold equals bold minus bold 1 over bold italic a bold cos bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis bold plus bold italic c

bold space bold integral bold cos bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis bold space bold d bold italic x bold equals bold 1 over bold italic a bold sin bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis bold plus bold italic c

bold space bold integral bold sec to the power of bold 2 bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis bold space bold d bold italic x bold equals bold 1 over bold italic a bold tan bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis bold plus bold italic c

  • For calculus with trigonometric functions angles must be measured in radians

    • Ensure you know how to change the angle mode on your GDC

Examiner Tips and Tricks

Make sure you are familiar with the calculus formulas that are in the exam formula booklet. Many standard integrals are included, but remember that you can also use the standard derivatives in the booklet to help you find antiderivatives.

Just remember to add '+c', the constant of integration, for any indefinite integrals you solve.

Worked Example

a)  Find, in the formspace straight F left parenthesis x right parenthesis plus c, an expression for each integral

  1. space integral cos x space straight d x

  2. space integral sec squared space stretchy left parenthesis 3 x minus pi over 3 stretchy right parenthesis space straight d x

5-4-1-ib-hl-ai-aa-extraaa-we1a-soltn

b)  A curve has equationspace y equals integral 2 sin open parentheses 2 x plus pi over 6 close parentheses space straight d x.

 The curve passes through the point with coordinatesspace open parentheses pi over 3 comma space square root of 3 close parentheses.

Find an expression forspace y.

5-4-1-ib-hl-ai-aa-extraaa-we1b-soltn-

Did this video help you?

Integrating e^x & 1/x

How do I integrate exponentials and 1/x?

  • The antiderivatives involvingbold space bold e to the power of bold italic x andspace bold ln bold italic x are

bold space bold integral bold space bold e to the power of bold italic x bold space bold d bold italic x bold equals bold space bold e to the power of bold italic x bold plus bold italic c

where bold italic c is the constant of integration

Examiner Tips and Tricks

Both of the standard integrals above are in the exam formula booklet.

  • For the linear functionbold space bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis, wherespace bold italic a andspace bold italic b are constants,

 bold space bold integral bold e to the power of bold italic a bold italic x bold italic plus bold italic b end exponent bold space bold d bold italic x bold equals bold 1 over bold italic a bold e to the power of bold italic a bold italic x bold italic plus bold italic b end exponent bold plus bold italic c

  • It follows from the last result (by using the using the reverse chain rule) that

 

Examiner Tips and Tricks

With ln, it can sometimes be useful to write the constant of integration,space c, as a logarithm. I.e., by letting c equals ln k for some (positive) constant k.

Using the laws of logarithms, the answer can then be written as a single term. For example:

table row cell space integral 1 over x space straight d x end cell equals cell ln stretchy vertical line x stretchy vertical line plus c end cell row blank equals cell ln stretchy vertical line x stretchy vertical line plus ln k end cell row blank equals cell ln open parentheses k stretchy vertical line x stretchy vertical line close parentheses end cell end table

Worked Example

A curve has the gradient functionspace f to the power of apostrophe left parenthesis x right parenthesis equals fraction numerator 3 over denominator 3 x plus 2 end fraction plus straight e to the power of 4 minus x end exponent.


Given the exact value ofspace f left parenthesis 1 right parenthesis isspace ln space 10 minus straight e cubed find an expression forspace f left parenthesis x right parenthesis.

NA5HYQ75_5-4-1-ib-sl-aa-only-we2-soltn

You've read 0 of your 5 free revision notes this week

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Paul

Author: Paul

Expertise: Maths Content Creator

Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams.

Dan Finlay

Reviewer: Dan Finlay

Expertise: Maths Subject Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.