Vector Planes (Edexcel A Level Further Maths: Core Pure): Exam Questions

Exam code: 9FM0

53 mins6 questions
1a
Sme Calculator
3 marks

The line l subscript 1 has equation

fraction numerator x minus 1 over denominator 2 end fraction equals fraction numerator y plus 1 over denominator negative 1 end fraction equals fraction numerator z minus 4 over denominator 3 end fraction

The line l subscript 2 has equation

bold r equals bold i plus 3 bold k plus t left parenthesis bold i minus bold j plus 2 bold k right parenthesis

where t is a scalar parameter.

Show that l subscript 1 and l subscript 2 lie in the same plane.

1b
1 mark

Write down a vector equation for the plane containing l subscript 1 and l subscript 2.

2a
Sme Calculator
2 marks

bold M equals open parentheses table row 2 cell negative 1 end cell 1 row 3 k 4 row 3 2 cell negative 1 end cell end table close parentheses where k is a constant

Find the values of k for which the matrix bold M has an inverse.

2b
Sme Calculator
5 marks

Find, in terms of space p, the coordinates of the point where the following planes intersect

table row cell 2 x – y plus z end cell equals p row cell 3 x – 6 y plus 4 z end cell equals 1 row cell 3 x plus 2 y – space z end cell equals 0 end table

2c
4 marks

(i) Find the value of q for which the set of simultaneous equations

table row cell 2 x – y plus z end cell equals 1 row cell 3 x – 5 y plus 4 z end cell equals q row cell 3 x plus 2 y – space z end cell equals 0 end table

can be solved.

(ii) For this value of q, interpret the solution of the set of simultaneous equations geometrically.

3a
Sme Calculator
4 marks

bold M equals stretchy left parenthesis table row k 5 7 row 1 1 1 row 2 1 cell negative 1 end cell end table stretchy right parenthesis where k is a constant

Given that k not equal to 4 comma find, in terms of k, the inverse of the matrix bold M.

3b
3 marks

Find, in terms ofspace p, the coordinates of the point where the following planes intersect.

table row cell 2 x plus 5 y plus 7 z end cell equals 1 row cell x plus y plus z end cell equals p row cell 2 x plus y minus z end cell equals 2 end table

3c
Sme Calculator
7 marks

(i) Find the value of q for which the following planes intersect in a straight line.

table row cell 4 x plus 5 y plus 7 z end cell equals 1 row cell x plus y plus z end cell equals q row cell 2 x plus y minus z end cell equals 2 end table

(ii) For this value of q, determine a vector equation for the line of intersection.

4
7 marks

The line l subscript 1 has equation fraction numerator x minus 2 over denominator 4 end fraction equals fraction numerator y minus 4 over denominator negative 2 end fraction equals fraction numerator z plus 6 over denominator 1 end fraction

The plane capital pi has equation x minus 2 y plus z equals 6 space

The line l subscript 2 is the reflection of the line l subscript 1in the plane capital pi

Find a vector equation of the line l subscript 2

5a
3 marks

The plane capital pi subscript 1 has vector equation

bold r times left parenthesis 3 bold i space minus space 4 bold j space plus space 2 bold k right parenthesis space equals space 5

Find the perpendicular distance from the point (6, 2, 12) to the plane capital pi subscript 1

5b
2 marks

The plane capital pi subscript 2 has vector equation

bold r bold space equals space lambda left parenthesis 2 bold i space plus space bold j space plus space 5 bold k right parenthesis space plus space mu left parenthesis bold i space minus bold space bold j bold space minus space 2 bold k right parenthesis

where lambda and mu are scalar parameters.

Show that the vector negative bold i space minus space 3 bold j space plus space bold k is perpendicular to capital pi subscript 2

5c
Sme Calculator
3 marks

Show that the acute angle between capital pi subscript 1 and capital pi subscript 2is 52° to the nearest degree.

6a
4 marks

The plane capital pi subscript 1 has equation

bold r bold space equals space 2 bold i space plus space 4 bold j space – space bold k space plus space lambda left parenthesis bold i space plus space 2 bold j space – space 3 bold k right parenthesis space plus space mu left parenthesis – bold i space plus space 2 bold j space plus space bold k right parenthesis

where lambda and mu are scalar parameters.

Find a Cartesian equation for capital pi subscript 1

6b
3 marks

The line l has equation

fraction numerator x minus 1 over denominator 5 end fraction equals fraction numerator y minus 3 over denominator negative 3 end fraction equals fraction numerator z plus 2 over denominator 4 end fraction

Find the coordinates of the point of intersection l with capital pi subscript 1

6c
Sme Calculator
2 marks

The plane capital pi subscript 2 has equation

bold r times left parenthesis 2 bold i space – space bold j space plus space 3 bold k right parenthesis space equals space 5

Find, to the nearest degree, the acute angle between capital pi subscript 1 and capital pi subscript 2