Differentiating Inverse Trigonometric Functions (DP IB Analysis & Approaches (AA)): Revision Note

Differentiating Inverse Trigonometric Functions

What are the inverse trigonometric functions?

  • arcsin, arccos and arctan are functions defined as the inverse functions of sine, cosine and tangent respectively

    •  arcsin open parentheses fraction numerator square root of 3 over denominator 2 end fraction close parentheses equals straight pi over 3 which is equivalent to sin space open parentheses pi over 3 close parentheses equals fraction numerator square root of 3 over denominator 2 end fraction

    •  arctan left parenthesis negative 1 right parenthesis equals fraction numerator 3 pi over denominator 4 end fraction which is equivalent to tan open parentheses fraction numerator 3 pi over denominator 4 end fraction close parentheses equals negative 1

What are the derivatives of the inverse trigonometric functions?

  • f left parenthesis x right parenthesis equals arcsin space x

    • f apostrophe left parenthesis x right parenthesis equals fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction

  • f left parenthesis x right parenthesis equals arccos space x

    • f apostrophe left parenthesis x right parenthesis equals negative fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction

  • f left parenthesis x right parenthesis equals arctan space x

    • f apostrophe left parenthesis x right parenthesis equals fraction numerator 1 over denominator 1 plus x squared end fraction

  • Unlike other derivatives these look completely unrelated at first

    • their derivation involves use of the identity cos squared space x plus sin squared space x identical to 1

    • hence the squares and square roots!

  • All three are given in the formula booklet

  • Note with the derivative of arctan space x that open parentheses 1 plus x squared close parentheses is the same as open parentheses x squared plus 1 close parentheses

How do I show or prove the derivatives of the inverse trigonometric functions?

  • For y equals arcsin space x

    • Rewrite, sin space y equals x

    • Differentiate implicitly, cos space y fraction numerator straight d y over denominator straight d x end fraction equals 1

    • Rearrange, fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator 1 over denominator cos space y end fraction

    • Using the identity cos squared space y identical to 1 minus sin squared space y rewrite, fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator 1 over denominator square root of 1 minus sin squared space y end root end fraction

    • Since, sin space y equals xfraction numerator straight d y over denominator straight d x end fraction equals fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction

  • Similarly, for y equals arccos space x

    • cos space y equals x

    • negative sin space y fraction numerator straight d y over denominator straight d x end fraction equals 1

    • fraction numerator straight d y over denominator straight d x end fraction equals negative fraction numerator 1 over denominator sin space y end fraction

    • fraction numerator straight d y over denominator straight d x end fraction equals negative fraction numerator 1 over denominator square root of 1 minus cos squared space y end root end fraction

    • fraction numerator straight d y over denominator straight d x end fraction equals negative fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction

  • Notice how the derivative of y equals arcsin space x is positive but is negative for y equals arccos space x

    • This subtle but crucial difference can be seen in their graphs

      • y equals arcsin space x has a positive gradient for all values of x in its domain

      • y equals arccos space x has a negative gradient for all values of x in its domain

What do the derivative of inverse trig look like with a linear function of x?

  • For linear functions of the form a x plus b

  • f left parenthesis x right parenthesis equals arcsin open parentheses a x plus b close parentheses

    • f apostrophe left parenthesis x right parenthesis equals fraction numerator a over denominator square root of 1 minus left parenthesis a x plus b right parenthesis squared end root end fraction

  • f left parenthesis x right parenthesis equals arccos open parentheses a x plus b close parentheses

    • f apostrophe left parenthesis x right parenthesis equals fraction numerator a over denominator square root of 1 minus left parenthesis a x plus b right parenthesis squared end root end fraction

  • f left parenthesis x right parenthesis equals arctan open parentheses a x plus b close parentheses

    • f apostrophe left parenthesis x right parenthesis equals fraction numerator a over denominator 1 plus left parenthesis a x plus b right parenthesis squared end fraction

  • These are not in the formula booklet 

    • they can be derived from chain rule

    • they are not essential to remember

    • they are not commonly used

Examiner Tips and Tricks

  • For space f left parenthesis x right parenthesis equals arctan space x the terms on the denominator can be reversed (as they are being added rather than subtracted)

    • space f apostrophe left parenthesis x right parenthesis equals fraction numerator 1 over denominator 1 plus x squared end fraction equals fraction numerator 1 over denominator x squared plus 1 end fraction

    • Don't be fooled by this, it sounds obvious but on awkward "show that" questions it can be off-putting!

Worked Example

a)       Show that the derivative of arctan space x is fraction numerator 1 over denominator 1 plus x squared end fraction

5-8-3-ib-hl-aa-only-we2a-soltn

b) Find the derivative of arctan left parenthesis 5 x cubed minus 2 x right parenthesis.

5-8-3-ib-hl-aa-only-we2b-soltn

You've read 0 of your 5 free revision notes this week

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Paul

Author: Paul

Expertise: Maths Content Creator

Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams.