Polynomials (Edexcel A Level Maths: Pure): Exam Questions

Exam code: 9MA0

3 hours43 questions
13 marks

straight f open parentheses x close parentheses equals a x cubed plus 10 x squared minus 3 a x minus 4

Given that left parenthesis x minus 1 right parenthesis is a factor of straight f left parenthesis x right parenthesis, find the value of the constant a.

You must make your method clear.

23 marks

straight f open parentheses x close parentheses equals 3 x cubed plus 2 a x squared minus 4 x plus 5 a

Given that open parentheses x plus 3 close parentheses is a factor of straight f open parentheses x close parentheses, find the value of the constant a.

32 marks

Use the factor theorem to show that left parenthesis x minus 2 right parenthesis space is a factor of x cubed minus x squared minus 14 x plus 24.

45 marks

Expand and simplify

(i) left parenthesis 2 x plus 3 right parenthesis left parenthesis x minus 4 right parenthesis 

(ii) 2 p left parenthesis p plus 3 right parenthesis left parenthesis p minus 2 right parenthesis 

(iii) left parenthesis y minus 1 right parenthesis left parenthesis y minus 2 right parenthesis squared 

54 marks

Factorise

(i) 4 x squared minus 4 x minus 15 

(ii) 3 x cubed plus 11 x squared minus 4 x  

63 marks

Use polynomial division to divide x cubed plus 6 x squared plus 11 x plus 6 by  left parenthesis x plus 2 right parenthesis.

73 marks

Use polynomial division to show that left parenthesis x minus 2 right parenthesis is a factor of 2 x cubed plus 3 x squared minus 18 x plus 8.

83 marks

Given that left parenthesis x minus 4 right parenthesis is a factor of x cubed minus k x squared minus 4 x plus 16, find the value of k.

9a
Sme Calculator
1 mark

Expand and simplify

y left parenthesis 2 x plus 2 right parenthesis left parenthesis 7 minus x right parenthesis

9b3 marks

A rectangle has a width of left parenthesis 3 x minus 2 y plus 5 right parenthesis units and a length of left parenthesis x plus 3 y minus 1 right parenthesis units.

Expand and simplify an expression for the area of the rectangle in terms of x and y.

103 marks

Factorise

3 x cubed minus 51 x squared plus 126 x

112 marks

Factorise

15 x cubed plus 19 x squared minus 10 x

123 marks

Use polynomial division to divide x cubed minus 6 x squared minus 9 x plus 14 by left parenthesis x minus 7 right parenthesis.

1a
Sme Calculator
2 marks

straight f open parentheses x close parentheses equals 2 x cubed plus 5 x squared plus 2 x plus 15

Use the factor theorem to show that open parentheses x plus 3 close parentheses is a factor of straight f open parentheses x close parentheses.

1b2 marks

Find the constants a, b and c such that

straight f open parentheses x close parentheses equals open parentheses x plus 3 close parentheses open parentheses a x squared plus b x plus c close parentheses

1c
Sme Calculator
1 mark

Hence show that straight f open parentheses x close parentheses equals 0 has only one real root.

1d1 mark

Write down the real root of the equation straight f open parentheses x minus 5 close parentheses equals 0

2
Sme Calculator
3 marks

straight f left parenthesis x right parenthesis equals left parenthesis x minus 4 right parenthesis left parenthesis x squared minus 3 x plus k right parenthesis minus 42 where k is a constant

Given that left parenthesis x plus 2 right parenthesis is a factor of straight f left parenthesis x right parenthesis, find the value of k.

3a4 marks

A function is given by

straight f left parenthesis x right parenthesis equals x cubed minus 5 x squared plus 3 x plus 9

Given that left parenthesis x plus 1 right parenthesis is a factor, use an algebraic method to factorise straight f left parenthesis x right parenthesis.

Give your answer in the form

straight f left parenthesis x right parenthesis equals open parentheses x plus p close parentheses open parentheses x plus q close parentheses squared

where p and q are integers to be found.

3b3 marks

Sketch the curve with equation y equals straight f left parenthesis x right parenthesis, labelling the coordinates of any points at which the curve meets the coordinate axes.

43 marks

A function is given by

straight f left parenthesis x right parenthesis equals 2 x cubed plus left parenthesis p squared plus 1 right parenthesis x squared minus 11 x plus 4

Given that x equals 1 half is a root of the equation straight f open parentheses x close parentheses equals 0, find the possible values of p.

55 marks

A function is given by

straight f left parenthesis x right parenthesis equals x cubed minus 3 x squared minus 8 x plus 4

Given that x equals negative 2 space is a solution to the equation straight f left parenthesis x right parenthesis equals 0, use algebra to factorise straight f left parenthesis x right parenthesis as far as possible.

64 marks

A function is given by 

straight f left parenthesis x right parenthesis equals x cubed minus 5 x squared minus 2 x plus 24

The equation straight f open parentheses x close parentheses equals 0 has a solution at x equals 3.

Use algebra to factorise straight f left parenthesis x right parenthesis into three linear factors.

73 marks

Show that

left parenthesis 3 x plus y right parenthesis left parenthesis 2 x minus 3 y right parenthesis left parenthesis x minus 2 y right parenthesis identical to a x cubed plus b x squared y plus c x y squared plus d y cubed

where a, b, c and d are constants to be found.

82 marks

Use polynomial division to divide x cubed minus 19 x minus 30 by left parenthesis x minus 5 right parenthesis.

93 marks

A function is defined by

straight f left parenthesis x right parenthesis equals 2 x cubed minus x squared minus 16 x plus 15

Given that left parenthesis x plus 3 right parenthesis is a factor, factorise straight f left parenthesis x right parenthesis completely.

10a2 marks

A function is defined by

straight f left parenthesis x right parenthesis equals 2 x cubed minus 3 x squared minus 72 x minus 35

Show that

straight f left parenthesis x right parenthesis equals left parenthesis 2 x plus 1 right parenthesis left parenthesis a x squared plus b x plus c right parenthesis

where a, b and c are constants to be found.

10b2 marks

Hence factorise straight f left parenthesis x right parenthesis into three linear factors.

10c1 mark

Write down all real roots to the equation straight f left parenthesis x right parenthesis equals 0.

11a2 marks

A function is given by

straight f left parenthesis x right parenthesis equals 4 x cubed plus 4 x squared minus 23 x minus 30

Show that left parenthesis x plus 2 right parenthesis spaceis a factor of space straight f left parenthesis x right parenthesis.

11b3 marks

Factorise straight f left parenthesis x right parenthesis completely.

11c1 mark

Solve straight f left parenthesis x right parenthesis equals 0.

123 marks

straight f left parenthesis x right parenthesis equals x cubed minus 28 x plus 48

Given that left parenthesis x plus 6 right parenthesis is a factor of straight f left parenthesis x right parenthesis, factorise straight f left parenthesis x right parenthesis completely.

133 marks

Show that

left parenthesis 2 x minus 3 y right parenthesis squared left parenthesis y minus 2 x right parenthesis equals a x cubed plus b x squared y plus c x y squared plus d y cubed

where a, b, c and d are constants to be found.

14a2 marks

straight f left parenthesis x right parenthesis equals 6 x cubed minus 19 x squared plus 11 x plus 6

Show that straight f left parenthesis x right parenthesis equals left parenthesis 2 x minus 3 right parenthesis left parenthesis a x squared plus b x plus c right parenthesis where a comma space b and c are constants to be found.

14b2 marks

Hence factorise straight f left parenthesis x right parenthesis completely.

14c1 mark

Solve straight f left parenthesis x right parenthesis equals 0.

15a2 marks

straight f left parenthesis x right parenthesis equals 4 x cubed minus 7 x minus 3

Use the factor theorem to show that left parenthesis 2 x plus 1 right parenthesis is a factor of straight f left parenthesis x right parenthesis.

15b3 marks

Factorise straight f left parenthesis x right parenthesis completely.

15c1 mark

Solve straight f left parenthesis x right parenthesis equals 0.

1a2 marks

In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

straight f open parentheses x close parentheses equals 4 x cubed plus 5 x squared minus 10 x plus 4 a space space space space space space space space x element of straight real numbers

where a is a positive constant.

Given open parentheses x minus a close parentheses is a factor of straight f open parentheses x close parentheses, show that

a open parentheses 4 a squared plus 5 a minus 6 close parentheses equals 0

1b
Sme Calculator
4 marks

Hence

(i) Find the value of a

(ii) use algebra to find the exact solutions of the equation

straight f open parentheses x close parentheses equals 3

2a
Sme Calculator
3 marks

straight f open parentheses x close parentheses equals negative 3 x cubed plus 8 x squared minus 9 x plus 10 comma space space space space space x element of straight real numbers

(i) Calculate straight f open parentheses 2 close parentheses

(ii) Write straight f open parentheses x close parentheses as a product of two algebraic factors.

2b
Sme Calculator
2 marks

Using the answer to (a)(ii), prove that there are exactly two real solutions to the equation

negative 3 y to the power of 6 plus 8 y to the power of 4 minus 9 y squared plus 10 equals 0

36 marks

The function straight f left parenthesis x right parenthesis is given by

straight f left parenthesis x right parenthesis equals x to the power of 4 plus a x cubed minus 13 x squared minus 38 x minus 4 b

where a and b are constants.

Given that both left parenthesis x plus 1 right parenthesis and left parenthesis x plus 2 right parenthesis are factors of straight f left parenthesis x right parenthesis, find the values of a and b.

4a5 marks

A function is defined as

straight f left parenthesis x right parenthesis equals x cubed plus 9 x squared plus r x plus s

where r and s are constants.

Given that

  • straight f left parenthesis 2 right parenthesis equals 0

  • straight f left parenthesis negative 1 right parenthesis equals negative 54

find the values of r and s.

4b4 marks

Factorise straight f left parenthesis x right parenthesis completely.

54 marks

Given that

left parenthesis a x plus b y right parenthesis left parenthesis 2 x plus y right parenthesis left parenthesis x minus 3 y right parenthesis equals 8 x cubed plus c x squared y plus d x y squared minus 9 y cubed

find the values of a, b, c and d.

6
Sme Calculator
3 marks

Factorise completely x to the power of 5 y minus x y to the power of 5.

73 marks

A square has a side length of left parenthesis 5 x minus 2 y plus 3 right parenthesis units.

Find an expression for the length of the diagonal of the square, in terms of x and space y.

Give your answer in the form

square root of a x squared plus b x y plus c x plus d y squared plus e y plus f end root

where a, b, c, d, e and f are constants to be found.

8a5 marks

straight f left parenthesis x right parenthesis equals x cubed plus r x squared plus s x minus 30

Given that

  • straight f left parenthesis 2 right parenthesis equals 0

  • straight f left parenthesis negative 3 right parenthesis equals negative 240

find the values of r and s.

8b4 marks

Factorise straight f left parenthesis x right parenthesis completely.

94 marks

Given that 3 is a root of the equation

2 x cubed minus x squared minus 11 x minus 12 equals 0

show that the equation has no other real roots.

1a2 marks
Graph with two intersecting curves, C1 and C2, on an xy-plane. C1 is ascending in quadrant 1 only from just under half way up the y axis, while C2 is a downward (negative) parabola. C1 and C2 intersect twice
Figure 4

Figure 4 shows a sketch of part of the curve C subscript 1 with equation

y equals 2 x cubed plus 10 space space space space space space space space space space space space space space space space space space x greater than 0

and part of the curve C subscript 2 with equation

y equals 42 x minus 15 x squared minus 7 space space space space space space space space space space space space space space space space space space x greater than 0

Verify that the curves intersect at space x equals 1 half

1b5 marks

The curves intersect again at the point P

Using algebra and showing all stages of working, find the exact x coordinate of P

2a2 marks

In this question you must show detailed reasoning.

Solutions relying on calculator technology are not acceptable.

The curve C subscript 1 has equation y equals 8 minus 10 x plus 6 x squared minus x cubed

The curve C subscript 2 has equation y equals x squared minus 12 x plus 14

Verify that when x equals 1 the curves C subscript 1 and C subscript 2 intersect.

2b
Sme Calculator
5 marks

The curves also intersect when x equals k.

Given that k less than 0

use algebra to find the exact value of k.

33 marks

Given that

fraction numerator 4 x to the power of 4 minus 37 x squared plus 9 over denominator 2 x minus 1 end fraction identical to a x cubed plus b x squared plus c x plus d

find the values of a, b, c and d.

4a3 marks

straight f left parenthesis x right parenthesis equals 3 x to the power of 4 plus x cubed minus 12 x squared minus 49 x minus 15

Show that straight f left parenthesis x right parenthesis equals left parenthesis 3 x plus 1 right parenthesis left parenthesis a x cubed plus b x squared plus c x plus d right parenthesis where a comma space b comma space c and d are constants to be found.

4b4 marks

Given that left parenthesis x minus 3 right parenthesis is a factor of straight f left parenthesis x right parenthesis, factorise straight f left parenthesis x right parenthesis completely.

4c2 marks

Hence show that the equation straight f left parenthesis x right parenthesis equals 0 has exactly 2 real roots.

55 marks

A function is defined as

straight f left parenthesis x right parenthesis equals 6 x to the power of 4 plus 7 x cubed minus 27 x squared minus 28 x plus 12

Given that left parenthesis 2 x plus 3 right parenthesis is a factor of straight f left parenthesis x right parenthesis, use algebra to express straight f left parenthesis x right parenthesis as the product of four linear factors.

6a2 marks

Expand and simplify

left parenthesis x plus y right parenthesis left parenthesis x minus y right parenthesis left parenthesis y minus x right parenthesis left parenthesis negative x minus y right parenthesis

6b3 marks

A cuboid has a length of left parenthesis 2 x minus 3 y plus 3 right parenthesis units, a width of left parenthesis 2 x plus 3 y minus 3 right parenthesis units, and a height of left parenthesis x minus y right parenthesis units. 

Expand and simplify an expression for the volume of the cuboid in terms of x and y.

7a1 mark

straight f left parenthesis x right parenthesis equals 2 x to the power of 4 minus 15 x cubed minus 10 x squared plus 105 x plus 98

Find straight f left parenthesis negative 1 right parenthesis and straight f left parenthesis negative 2 right parenthesis.

7b6 marks

Solve

2 x to the power of 4 minus 15 x cubed minus 10 x squared plus 105 x plus 98 equals 0