Vector Equations of Lines (DP IB Analysis & Approaches (AA): HL): Exam Questions

4 hours29 questions
1a
Sme Calculator
3 marks

The points straight A and straight B are given by straight A left parenthesis 4 comma space 2 comma negative 3 right parenthesis and straight B left parenthesis 0 comma space 5 comma space 1 right parenthesis.

Find a vector equation of the line straight L that passes through points straight A and straight B.

1b
Sme Calculator
3 marks

Determine whether or not the point straight C left parenthesis negative 1 comma space 3 comma space 2 right parenthesis lies on the line straight L.

2
Sme Calculator
5 marks

Find the Cartesian equations of a line that is parallel to the vector bold italic a equals 3 bold italic i minus 4 bold italic j plus bold italic k and passes through the point straight X left parenthesis 3 comma negative 2 comma space 0 right parenthesis.

3
Sme Calculator
6 marks

Find the equation of the line that is normal to the vector 4 bold italic i plus 5 bold italic j and passes through the point straight P left parenthesis 7 comma negative 1 right parenthesis, leaving your answer in the form a x plus b y plus c equals 0 comma where a comma space b and c element of straight integer numbers.

4a2 marks

Consider the two lines l subscript 1 and l subscript 2 defined by the equations: 

l subscript 1 colon bold italic a equals open parentheses table row 4 row 1 row 6 end table close parentheses plus lambda open parentheses table row 1 row cell negative 3 end cell row cell negative 5 end cell end table close parentheses 

l subscript 2 colon bold italic b equals open parentheses table row 5 row cell negative 11 end cell row 10 end table close parentheses plus mu open parentheses table row cell negative 1 end cell row 6 row 2 end table close parentheses 

Find the scalar product of the direction vectors.

4b
Sme Calculator
4 marks

Hence, find the angle, in radians, between l subscript 1 and l subscript 2.

5a2 marks

Consider the lines l subscript 1 and l subscript 2 defined by: 

l subscript 1 colon space open curly brackets table row cell x equals 3 minus mu space end cell row cell y equals negative 2 plus 5 mu end cell row cell z equals 4 plus 2 mu end cell end table close

l subscript 2 colon space bold r equals open parentheses table row 3 row cell negative 1 end cell row 0 end table close parentheses plus lambda open parentheses table row 4 row 2 row 2 end table close parentheses. 

Show that the lines are not parallel.

5b5 marks

Hence, show that the lines l subscript 1 and l subscript 2 are skew.

6a
Sme Calculator
2 marks

Consider the lines l subscript 1 and l subscript 2 defined by the equations bold italic r subscript bold 1 equals open parentheses table row t row cell negative 2 end cell row 5 end table close parentheses plus alpha open parentheses table row cell negative 5 end cell row 2 row 1 end table close parentheses and bold italic r subscript bold 2 equals open parentheses table row cell negative 3 end cell row 6 row 9 end table close parentheses plus beta open parentheses table row 15 row cell 3 k end cell row cell negative 3 end cell end table close parentheses. 

Given that l subscript 1 and l subscript 2 are coincident, find the value of k.

6b
Sme Calculator
4 marks

Find the value of t.

7a2 marks

Two ships straight A and straight B are travelling so that their position relative to a fixed point straight O at time t, in hours, can be defined by the position vectors bold italic r subscript bold A equals left parenthesis 2 minus t right parenthesis bold italic i plus left parenthesis 4 plus 3 t right parenthesis bold italic j and bold italic r subscript bold B equals left parenthesis t minus 8 right parenthesis bold italic i plus left parenthesis 29 minus 2 t right parenthesis bold italic j bold. 

The unit vectors i and space j are a displacement of 1 km due East and North of straight O respectively. 

Find the coordinates of the initial position of the two ships.

7b
Sme Calculator
3 marks

Show that the two ships will collide and find the time at which this will occur.

7c
Sme Calculator
2 marks

Find the coordinates of the point of collision.

8a2 marks

The lines l subscript 1 and l subscript 2 can be defined by: 

l subscript 1 colon space bold italic r equals open parentheses table row 2 row cell negative 5 end cell row 1 end table close parentheses plus alpha open parentheses table row 3 row 2 row k end table close parentheses 

l subscript 2 colon space bold italic s equals open parentheses table row cell negative 3 end cell row cell negative 4 end cell row 2 end table close parentheses plus beta open parentheses table row cell negative 11 end cell row cell negative 3 end cell row 5 end table close parentheses 

Write down the parametric equations for l subscript 1.

8b
Sme Calculator
7 marks

Given that l subscript 1and l subscript 2 intersect at point straight T

(i) find the value of k

(ii) determine the coordinates of the point of intersection, straight T.

9a2 marks

Consider the triangle ABC. The points straight Astraight B and straight C have coordinates left parenthesis 4 comma space 0 comma negative 3 right parenthesis comma space left parenthesis 2 comma negative 2 comma negative 1 right parenthesis and left parenthesis 8 comma space 1 comma space 5 right parenthesis respectively.

M is the midpoint of open square brackets AB close square brackets. 

Find the coordinates of the midpoint M.

9b2 marks

Hence, find a vector equation of the line that passes through points straight C and straight M.

9c5 marks

The point straight P is the midpoint of open square brackets BC close square brackets. The line passing through points straight A and straight P can be defined by bold italic a equals open parentheses table row 4 row 0 row cell negative 3 end cell end table close parentheses plus mu open parentheses table row cell 1 half end cell row cell negative 1 half end cell row 5 end table close parentheses.

Show that the line AP intersects CM at the point open parentheses table row cell 13 over 3 comma end cell cell negative 1 third comma end cell end table 1 third close parentheses.

10a3 marks

A car, moving at constant speed, takes 4 minutes to drive in a straight line from point straight A open parentheses negative 3 comma space 5 close parentheses to point straight B open parentheses 7 comma space 11 close parentheses

At time t, in minutes, the position vector of the car relative to the origin can be given in the formbold space bold italic p equals a plus t b.

Find the vectors a and b.

10b3 marks

A cat has decided to take a nap at point straight X open parentheses 4 comma space 9 close parentheses. 

Show that the cat does not lie on the route along which the car drives.

10c
Sme Calculator
6 marks

Find the shortest distance between the car and the cat during the movement of the car.

1a5 marks

Point A has coordinates open parentheses 7 comma space minus 1 comma space 20 close parentheses  and the line l  is defined by the equations:

l colon open curly brackets table row cell x equals 3 plus lambda end cell row cell y equals 2 lambda minus 1 end cell row cell z equals lambda end cell end table close

Point straight B lies on the line l such that open square brackets AB close square brackets is perpendicular to l.

Find the coordinates of point straight B.

1b
Sme Calculator
2 marks

Hence find the shortest distance from A to the line l.

2a2 marks

Find the vector equation of the line l subscript 1 with Cartesian equations fraction numerator x plus 3 over denominator 4 end fraction equals fraction numerator y minus 2 over denominator 5 end fraction equals fraction numerator 3 minus z over denominator negative 4 end fraction

2b4 marks

A second line l subscript 2 runs parallel to l subscript 1 and passes through the points straight X open parentheses t comma space 2 comma negative 3 close parentheses and straight Y open parentheses 23 comma space 22 comma space q close parentheses.

Find the values of t and q

2c2 marks

Hence write down the equation of line l subscript 2 in Cartesian form.

36 marks

A line l passes through the points straight P open parentheses 6 comma space 5 comma space minus 2 close parentheses and Q open parentheses 2 x plus 2 comma space x minus 5 comma space x close parentheses and lies normal to the vector 3 straight i plus 4 straight j minus k

Find the vector equation of  l.

4
Sme Calculator
6 marks

Find the obtuse angle formed by the two lines l subscript 1 and l subscript 2 defined by the equations:

l subscript 1 colon open curly brackets table row cell x equals 4 minus 2 lambda end cell row cell y equals 1 plus 5 lambda end cell row cell z equals lambda minus 1 end cell end table close

l subscript 2 colon open curly brackets table row cell x equals 4 plus 3 mu end cell row cell y equals 18 plus mu end cell row cell z equals 6 plus 2 mu end cell end table close

5a3 marks

Consider the skew lines l subscript 1and l subscript 2 as defined by:

l subscript 1 colon open curly brackets table row cell x equals 5 plus mu end cell row cell y equals 3 minus mu end cell row cell z equals 2 mu minus 8 end cell end table close

l subscript 2 colon r equals open parentheses table row cell negative 4 end cell row 3 row 1 end table close parentheses plus lambda open parentheses table row 2 row cell negative 5 end cell row 2 end table close parentheses

Find a vector that is perpendicular to both lines.

5b
Sme Calculator
5 marks

Hence find the shortest distance between the two lines.

66 marks

Consider the lines l subscript 1 and l subscript 2 defined by the equations:

l subscript 1 colon open curly brackets table row cell x equals 2 plus 6 lambda end cell row cell y equals 2 plus q lambda end cell row cell z equals negative 8 minus 5 lambda end cell end table close

l subscript 2 colon fraction numerator negative 4 minus x over denominator 24 end fraction equals fraction numerator y minus 5 over denominator 12 end fraction equals fraction numerator z minus p over denominator 20 end fraction

Given that  l subscript 1 and l subscript 2 are coincident, find the value of p and q.

7a4 marks

Two spaceships straight A space and space straight B, in a 3D virtual reality game, are moving such that their positions relative to a fixed point straight O at time t seconds, 0 less or equal than t less than 30, are defined by the position vectors r subscript A equals open parentheses table row 2 row cell negative 3.5 end cell row 1 end table close parentheses plus t open parentheses table row cell 1.2 end cell row cell 0.5 end cell row 2 end table close parentheses and r subscript B equals open parentheses table row cell negative 2 end cell row 4 row cell 9.5 end cell end table close parentheses plus t open parentheses table row 2 row cell negative 1 end cell row cell 0.3 end cell end table close parentheses respectively.

Show that the two spaceships are on course to collide at point straight P and write down the coordinates of straight P.

7b1 mark

Spaceship straight B reduces its velocity such that its position vector is now given by

r subscript B equals open parentheses table row cell negative 2 end cell row 4 row cell 9.5 end cell end table close parentheses plus t open parentheses table row cell 1.6 end cell row cell negative 0.8 end cell row cell 0.24 end cell end table close parentheses 

Show that spaceship B is still travelling in its original direction.

7c
Sme Calculator
5 marks

Show that the distance between the two spaceships can be written as

square root of 4.9476 t squared minus 56.62 t plus 144.5 end root

7d
Sme Calculator
2 marks

Hence find the distance between the two spaceships when spaceship straight A is at straight P.

8a
Sme Calculator
2 marks

A car is moving with constant velocity along the line with equation r subscript c equals open parentheses table row 2 row 3 end table close parentheses plus t open parentheses table row 5 row 12 end table close parentheses. A bird is perched at the point open parentheses 25 comma space 32 comma 8 close parentheses and at t equals 0 , starts to fly at a constant velocity in the direction of the vector open parentheses 2 straight i plus 31 straight j minus 4 k close parentheses.

All distances are measured in metres and time in seconds. The base vectors straight i and straight j represent due east and due west respectively and the base vector bold italic k points upwards.

Verify that the bird does not collide with the car.

8b3 marks

Show that at some point in time the bird will be directly above the car and state the time at which this occurs.

8c2 marks

Hence find the distance between the bird and the car at that time.

9a3 marks

Consider the triangle ABC. The points A, B and C have coordinates open parentheses negative 6 comma space 3 comma space 13 close parentheses comma space open parentheses 4 comma space 5 comma space minus 8 close parentheses  and open parentheses 3 comma space minus 4 comma space t close parentheses  respectively.  A vector equation of the line that passes through point straight A and the midpoint of open square brackets BC close square brackets  is r equals open parentheses table row cell negative 6 end cell row 3 row 13 end table close parentheses plus lambda open parentheses table row 19 row cell negative 5 end cell row cell negative 27 end cell end table close parentheses 

Find the value of t.

9b3 marks

Find the vector equation of the line that passes through point B and the midpoint of [AC].

9c
Sme Calculator
7 marks

The two lines intersect inside the triangle at point X.

Show that the area of AXC is  1 third the area of triangle ABC .

107 marks

In the magical kingdom of Cartesia, all positions are measured relative to the ancient stone of power known as the Origin. This reference system corresponds to the standard x comma space y comma space z coordinate system used in mathematics, as shown in the diagram below.

q10-_3-10_vector-equations-of-lines_hard_ib_aa_hl_math_dig

Prince Vector, son of King Prime of Cartesia, needs to fly on his magical unicorn from the top of the Mystic Pedestal all the way to Cloud City, on an urgent rescue mission. 

The Mystic Pedestal is 14 kilometres west and 8 kilometres north of the Origin, and its top is one kilometre up from the level of the Origin. Cloud City is 11 kilometres east and 13 kilometres north of the Origin, and it is 11 kilometres up from the level of the Origin. 

Since there is not much time, the prince must fly directly from the top of the Mystic Pedestal to Cloud City. Unfortunately, the unicorn’s magic levels are low. In order for the unicorn to recharge it must pass within 12 kilometres of the Origin during the flight, and must do this before reaching the halfway point between the Mystic Pedestal and Cloud City. If the unicorn does not recharge before this point then it and the prince will crash into the barren wastes and the kingdom will perish. 

Using a vector method, determine whether or not the prince will reach Cloud City successfully. Use clear mathematical workings to justify your answer.

1
Sme Calculator
7 marks

The line l has equation r equals open parentheses table row 4 row 0 row 3 end table close parentheses plus lambda open parentheses table row cell negative 1 end cell row cell negative 2 end cell row 5 end table close parentheses and point A has coordinates open parentheses 3 comma space t comma space 2 close parentheses. Given that the shortest distance between point A and the line is fraction numerator square root of 645 over denominator 15 end fractionunits, find t , where t element of straight integer numbers.

 

2a6 marks

A line l subscript 1 has the equation r subscript 1 equals open parentheses 2 plus lambda close parentheses straight i plus open parentheses 6 lambda minus 3 close parentheses straight j plus open parentheses 5 plus 2 lambda close parentheses k and intersects the line l subscript 2 with equation r subscript 2 equals 5 straight i plus open parentheses 7 minus 4 mu close parentheses straight j plus open parentheses negative 3 minus 7 mu close parentheses k at point P, when lambda equals 3.

A third line l subscript 3 runs parallel to l subscript 1 and also intersects l subscript 2 at point X open parentheses t comma space t minus 2 comma space minus 2 t close parentheses.  

Find the parametric equations of l subscript 3.

2b2 marks

Find the distance open vertical bar PX close vertical bar.

3a
Sme Calculator
4 marks

Consider the two intersecting lines l subscript 1 and l subscript 2 defined by the equations:

l subscript 1 colon space r equals open parentheses table row 9 row 18 row 11 end table close parentheses plus lambda open parentheses table row cell negative 6 end cell row cell negative 3 end cell row k end table close parentheses

l subscript 2 colon space fraction numerator x plus 5 over denominator 2 end fraction equals fraction numerator y plus t over denominator negative 4 end fraction equals fraction numerator z minus 20 over denominator 3 end fraction 

Given that the angle between l subscript 1 and l subscript 2 is 1.281 rad, correct to 4 significant figures, find the value of k , where k element of straight integer numbers.

3b
Sme Calculator
3 marks

Find the value of t, giving your answer correct to 3 significant figures.

4
Sme Calculator
8 marks

Consider the two lines l subscript 1 and l subscript 2, where l subscript 1 passes through the points straight A open parentheses 11 comma space minus 2 comma space 3 close parentheses and straight B open parentheses 4 comma space 4 comma space minus 5 close parentheses and l subscript 2 is defined by the Cartesian equations fraction numerator x plus 7 over denominator 3 end fraction equals fraction numerator 2 y plus 9 over denominator 6 end fraction equals fraction numerator z plus 4 over denominator negative 4 end fraction 

Find the shortest distance between the two lines.

 

5a6 marks

Consider the line l subscript 1as defined by the equation r subscript 1 equals open parentheses table row 15 row 16 row cell negative 11 end cell end table close parentheses plus alpha open parentheses table row 2 row cell negative 1 end cell row 3 end table close parentheses

A point straight P stretchy left parenthesis r comma space t comma space minus r stretchy right parenthesis lies at a distance of square root of 405 units perpendicular from a point X open parentheses 17 comma space 15 comma space minus 8 close parentheses on l subscript 1

Find all possible coordinates of straight P.

5b2 marks

Given that t greater than 0, write down the set of parametric equations that defines the line l subscript 2 that passes through points straight P and straight X.

5c
Sme Calculator
3 marks

A third line l subscript 3 is defined by the equations fraction numerator negative x minus 13 over denominator 5 end fraction equals fraction numerator negative y minus 9 over denominator 4 end fraction equals fraction numerator z minus 4 over denominator 2 end fraction.

Determine the relationship between lines l subscript 2 and l subscript 3.

6a
Sme Calculator
2 marks

A wheelchair ramp is required to provide access to a building with a door that is located 22 cm above ground level.  The maximum angle that a ramp must be from the horizontal is 4.8°.

Calculate the minimum horizontal distance that the ramp must extend out.

6b
Sme Calculator
8 marks

The wheelchair ramp is supported by a steel frame.  A cross section of the ramp can be seen in the diagram below.  A metal strut joins M, the midpoint of [AC], to a point X on the line [AB]. [AB]. XM=11.1 cm and straight M straight X with hat on top straight C=90°.  

q6a_3-10_vector-equations-of-lines_very-hard_ib_aa_hl_maths-diagram

Using the horizontal distance found in part (a) and assuming that point A is at the origin, use a vector method to calculate the length XB.

7a2 marks

Two drones X and Y are being flown over an area of rainforest to look for signs of illegal logging. Their positions relative to the observation centre, are given by

r subscript x equals open parentheses table row cell negative 3 end cell row cell 1.6 end cell row cell 2.5 end cell end table close parentheses plus t open parentheses table row 2 row cell negative 2 end cell row 1 end table close parentheses  and r subscript y equals open parentheses table row cell 2.5 end cell row 0 row cell negative 2 end cell end table close parentheses plus t open parentheses table row cell 1.5 end cell row 6 row 4 end table close parentheses

at time t  minutes after take-off, 0 less or equal than t less than 20. All distances are in metres.

Verify that the two drones will not collide.

7b
Sme Calculator
6 marks

Find the shortest distance between the two drones and the time at which it occurs.

7c
Sme Calculator
6 marks

A third drone Z begins its flight at t equals 8 and its position relative to the observation centre is given by r subscript z equals open parentheses table row 2 row cell 1.5 end cell row cell 4.5 end cell end table close parentheses plus t open parentheses table row 3 row 4 row 1 end table close parentheses 

Each drone can observe a circular area of ground,  A comma such that A equals 1.8 h squared where h is the height of the drone above the ground in metres.

Show that the area of ground that can be observed by drone Z five minutes after it takes off overlaps with the area of ground that can be observed by drone Y at that time.

8a5 marks

Consider the tetrahedron ABCD, where A(3, 5, 8), B(-2, 3, 2), C(5, -1, 3) and D(-3, 0, 1). M is the midpoint of the line BC and point P lies along the line DM.

Given that the volume of the tetrahedron ABCP is 1 third of the volume of the tetrahedron ABCD, find the Cartesian equations of the line going through points A and P.

8b
Sme Calculator
5 marks

X is the midpoint of [AD].

Find the coordinates of the point of intersection between the line found in part (a) and the line going through [MX].

9a
Sme Calculator
6 marks

A car is moving at a constant speed of 15 ms-1 in the direction parallel to the vector 3 straight i minus 6 straight j.  Two birds are perched at points straight A left parenthesis 17 comma space 28 comma space 16 right parenthesis  and straight B open parentheses negative 48 comma space 128 comma space 26 close parentheses

At t equals 0, the car is located at open parentheses 2 comma space 4 comma space 0 close parentheses  and the bird at point A starts to fly at a constant velocity of  fraction numerator 7 square root of 365 over denominator 10 end fraction ms-1. The bird at point B begins to fly at a constant velocity in the direction of the vector 52 straight i minus 60 straight j minus 9 k when t equals 1.2

When bird A reaches the position of open parentheses 44 comma negative 24 comma space 4 close parentheses, both birds and the car lie in a straight line.

Find the equation of the line along which the birds and car lie.

9b
Sme Calculator
6 marks

Find the speed at which bird B is travelling.