Tangents & Normals to Ellipses (Edexcel A Level Further Maths): Revision Note

Exam code: 9FM0

Mark Curtis

Last updated

Tangents & normals to ellipses

What is a tangent or a normal to an ellipse at a general point?

  • The position of the general point P open parentheses a cos theta comma space b sin theta close parentheses on the ellipse x squared over a squared plus y squared over b squared equals 1 depends on theta

  • It is possible to calculate equations of tangents and normals at P open parentheses a cos theta comma space b sin theta close parentheses

    • where the coefficients are in terms of theta

      • i.e. as P varies, the equations vary

Ellipse diagram showing the equation x^2/a^2 + y^2/b^2 = 1, with point P at (a cos theta, b sin theta), a tangent drawn at P and a normal drawn at P.
  • In general

    • at the point P open parentheses a cos theta comma space b sin theta close parentheses on the ellipse x squared over a squared plus y squared over b squared equals 1

      • open parentheses b cos theta close parentheses x plus open parentheses a sin theta close parentheses y equals a b is the tangent

      • open parentheses a sin theta close parentheses x minus open parentheses b cos theta close parentheses y equals open parentheses a squared minus b squared close parentheses sin theta cos theta is the normal

  • Be careful with infinite gradients at the vertices

    • e.g. the equation of the tangent at open parentheses a comma space 0 close parentheses is x equals a

    • e.g. the equation of the normal at open parentheses 0 comma space b close parentheses is x equals 0

Examiner Tips and Tricks

You are not expected to remember the general formulae for tangents and normals, but you are expected to be able to work them out using the steps below.

How do I find the equation of a tangent to an ellipse?

  • To find the equation of the tangent to the ellipse x squared over a squared plus y squared over b squared equals 1 at the general point P open parentheses a cos theta comma space b sin theta close parentheses:

  • STEP 1
    Find the gradient m subscript T of the tangent at P open parentheses a cos theta comma space b sin theta close parentheses in terms of theta

    • either by implicit differentiation of x squared over a squared plus y squared over b squared equals 1 to find fraction numerator straight d y over denominator straight d x end fraction

      • then substituting x equals a cos theta and y equals b sin theta into the result

    • or by parametric differentiation of x equals a cos theta and y equals b sin theta

      • using fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator straight d y over denominator straight d theta end fraction cross times fraction numerator straight d theta over denominator straight d x end fraction equals fraction numerator open parentheses fraction numerator straight d y over denominator straight d theta end fraction close parentheses over denominator open parentheses fraction numerator straight d x over denominator straight d theta end fraction close parentheses end fraction

  • STEP 2
    Substitute into the equation of a straight line y minus y subscript 1 equals m subscript T open parentheses x minus x subscript 1 close parentheses the following:

    • m subscript T in terms of theta

    • x subscript 1 equals a cos theta

    • y subscript 1 equals b sin theta

    • and simplify using trig identities

Examiner Tips and Tricks

It is possible to make y the subject of x squared over a squared plus y squared over b squared equals 1 to find fraction numerator straight d y over denominator straight d x end fraction, i.e. y equals plus-or-minus square root of b squared open parentheses 1 minus x squared over a squared close parentheses end root, but differentiating this is more messy than implicit or parametric differentiation!

Worked Example

Show that the tangent to the ellipse x squared over 16 plus y squared over 9 equals 1 at the point P open parentheses 4 cos theta comma space 3 sin theta close parentheses has the equation

open parentheses 3 cos theta close parentheses x plus open parentheses 4 sin theta close parentheses y equals 12.

Answer:

The tangent has the equation y minus y subscript 1 equals m subscript T open parentheses x minus x subscript 1 close parentheses

Method 1

Use implicit differentiation to differentiate x squared over 16 plus y squared over 9 equals 1

fraction numerator 2 x over denominator 16 end fraction plus fraction numerator 2 y over denominator 9 end fraction fraction numerator straight d y over denominator straight d x end fraction equals 0

Substitute x equals 4 cos theta and y equals 3 sin theta into the result and rearrange for fraction numerator straight d y over denominator straight d x end fraction

table row cell fraction numerator 2 open parentheses 4 cos theta close parentheses over denominator 16 end fraction plus fraction numerator 2 open parentheses 3 sin theta close parentheses over denominator 9 end fraction fraction numerator straight d y over denominator straight d x end fraction end cell equals 0 row cell fraction numerator up diagonal strike 2 open parentheses 3 sin theta close parentheses over denominator 9 end fraction fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative fraction numerator up diagonal strike 2 open parentheses 4 cos theta close parentheses over denominator 16 end fraction end cell row cell fraction numerator sin theta over denominator 3 end fraction fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative fraction numerator cos theta over denominator 4 end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative fraction numerator 3 cos theta over denominator 4 sin theta end fraction end cell end table

Method 2

Use parametric differentiation to find fraction numerator straight d y over denominator straight d x end fraction from x equals 4 cos theta and y equals 3 sin theta

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator straight d y over denominator straight d theta end fraction cross times fraction numerator straight d theta over denominator straight d x end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator open parentheses fraction numerator straight d y over denominator straight d theta end fraction close parentheses over denominator open parentheses fraction numerator straight d x over denominator straight d theta end fraction close parentheses end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative fraction numerator 3 cos theta over denominator 4 sin theta end fraction end cell end table

After either method, substitute m subscript T equals table row blank blank minus end table table row blank blank cell fraction numerator 3 cos theta over denominator 4 sin theta end fraction end cell end table, x subscript 1 equals 4 cos theta and y subscript 1 equals 3 sin theta into y minus y subscript 1 equals m subscript T open parentheses x minus x subscript 1 close parentheses

y minus 3 sin theta equals table row blank blank minus end table table row blank blank cell fraction numerator 3 cos theta over denominator 4 sin theta end fraction end cell end table open parentheses x minus 4 cos theta close parentheses

Rearrange into the form given in the question

table row cell open parentheses 4 sin theta close parentheses y minus 12 sin squared theta end cell equals cell negative open parentheses 3 cos theta close parentheses x plus 12 cos squared theta end cell row cell open parentheses 3 cos theta close parentheses x plus open parentheses 4 sin theta close parentheses y end cell equals cell 12 open parentheses cos squared theta plus sin squared theta close parentheses end cell end table

Use that cos squared theta plus sin squared theta identical to 1 to get the final answer

open parentheses 3 cos theta close parentheses x plus open parentheses 4 sin theta close parentheses y equals 12

What is the tangent condition for an ellipse?

  • The condition for a straight line y equals m x plus c to be a tangent to the ellipse x squared over a squared plus y squared over b squared equals 1 is that the gradient m and y-intercept c of the straight line must satisfy

    • a squared m squared plus b squared equals c squared

  • You need to know how to prove this condition

    • by solving y equals m x plus c and x squared over a squared plus y squared over b squared equals 1 simultaneously

    • and forcing the discriminant to be zero

      • See the worked example below

Worked Example

Prove that, if y equals m x plus c is tangent to x squared over a squared plus y squared over b squared equals 1, then a squared m squared plus b squared equals c squared.

Answer:

First substitute y equals m x plus c into the equation x squared over a squared plus y squared over b squared equals 1

x squared over a squared plus open parentheses m x plus c close parentheses squared over b squared equals 1

Multiply both sides by a squared b squared, expand and rearrange into a three-term quadratic in x

table row cell b squared x squared plus a squared open parentheses m x plus c close parentheses squared end cell equals cell a squared b squared end cell row cell b squared x squared plus a squared open parentheses m squared x squared plus 2 m c x plus c squared close parentheses end cell equals cell a squared b squared end cell row cell open parentheses b squared plus a squared m squared close parentheses x squared plus 2 a squared m c x plus a squared open parentheses c squared minus b squared close parentheses end cell equals 0 end table

The solutions to this equation are the x-intercepts of the points of intersection

Force the discriminant to be zero, as a tangent only touches the ellipse once

open parentheses 2 a squared m c close parentheses squared minus 4 open parentheses b squared plus a squared m squared close parentheses cross times a squared open parentheses c squared minus b squared close parentheses equals 0

It helps to move the second half to the other side, to make expanding easier

open parentheses 2 a squared m c close parentheses squared equals 4 open parentheses b squared plus a squared m squared close parentheses cross times a squared open parentheses c squared minus b squared close parentheses

Factorise out 4 a squared from both sides, cancel, then expand the brackets and cancel any common terms on both sides

table row cell 4 a to the power of 4 m squared c squared end cell equals cell 4 a squared open parentheses b squared plus a squared m squared close parentheses open parentheses c squared minus b squared close parentheses end cell row cell up diagonal strike 4 a squared end strike a squared m squared c squared end cell equals cell up diagonal strike 4 a squared end strike open parentheses b squared plus a squared m squared close parentheses open parentheses c squared minus b squared close parentheses end cell row cell up diagonal strike a squared m squared c squared end strike end cell equals cell b squared c squared minus b to the power of 4 plus up diagonal strike a squared m squared c squared end strike minus a squared m squared b squared end cell row 0 equals cell b squared c squared minus b to the power of 4 minus a squared m squared b squared end cell end table

Factorise out b squared and cancel (as b not equal to 0 in x squared over a squared plus y squared over b squared equals 1)

table row 0 equals cell up diagonal strike b squared end strike open parentheses c squared minus b squared minus a squared m squared close parentheses end cell row 0 equals cell c squared minus b squared minus a squared m squared end cell end table

This rearranges to the answer

a squared m squared plus b squared equals c squared

How do I find the equation of a normal to an ellipse?

  • To find the equation of the normal to the ellipse x squared over a squared plus y squared over b squared equals 1 at the general point P open parentheses a cos theta comma space b sin theta close parentheses:

    • follow the previous steps for finding the equation of tangent

      • but use y minus y subscript 1 equals m subscript N open parentheses x minus x subscript 1 close parentheses as the equation of the normal

      • where m subscript N equals negative 1 over m subscript T is the negative reciprocal of the tangent gradient

Worked Example

Show that the normal to the ellipse x squared over a squared plus y squared over b squared equals 1 at the point P open parentheses a cos theta comma space b sin theta close parentheses has the equation

open parentheses a sin theta close parentheses x minus open parentheses b cos theta close parentheses y equals open parentheses a squared minus b squared close parentheses sin theta cos theta

Answer:

The normal has the equation y minus y subscript 1 equals m subscript N open parentheses x minus x subscript 1 close parentheses where the normal gradient is the negative reciprocal of the tangent gradient, m subscript N equals negative 1 over m subscript T

Method 1

Use implicit differentiation to differentiate x squared over a squared plus y squared over b squared equals 1

fraction numerator 2 x over denominator a squared end fraction plus fraction numerator 2 y over denominator b squared end fraction fraction numerator straight d y over denominator straight d x end fraction equals 0

Substitute x equals a cos theta and y equals b sin theta into the result and rearrange for fraction numerator straight d y over denominator straight d x end fraction (the gradient of the tangent)

table row cell fraction numerator 2 open parentheses a cos theta close parentheses over denominator a squared end fraction plus fraction numerator 2 open parentheses b sin theta close parentheses over denominator b squared end fraction fraction numerator straight d y over denominator straight d x end fraction end cell equals 0 row cell fraction numerator up diagonal strike 2 open parentheses b sin theta close parentheses over denominator b squared end fraction fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative fraction numerator up diagonal strike 2 open parentheses a cos theta close parentheses over denominator a squared end fraction end cell row cell fraction numerator sin theta over denominator b end fraction fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative fraction numerator cos theta over denominator a end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative fraction numerator b cos theta over denominator a sin theta end fraction end cell end table

Method 2

Use parametric differentiation to find fraction numerator straight d y over denominator straight d x end fraction (the gradient of the tangent) from x equals a cos theta and y equals b sin theta

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator straight d y over denominator straight d theta end fraction cross times fraction numerator straight d theta over denominator straight d x end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator open parentheses fraction numerator straight d y over denominator straight d theta end fraction close parentheses over denominator open parentheses fraction numerator straight d x over denominator straight d theta end fraction close parentheses end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative fraction numerator b cos theta over denominator a sin theta end fraction end cell end table

After either method, convert the tangent gradient into the normal gradient (e.g. find the negative reciprocal, or use m subscript N equals negative 1 over m subscript T)

m subscript N equals fraction numerator a sin theta over denominator b cos theta end fraction

Substitute m subscript N equals fraction numerator a sin theta over denominator b cos theta end fraction, x subscript 1 equals a cos theta and y subscript 1 equals b sin theta into y minus y subscript 1 equals m subscript N open parentheses x minus x subscript 1 close parentheses

y minus b sin theta equals table row blank blank cell fraction numerator a sin theta over denominator b cos theta end fraction end cell end table open parentheses x minus a cos theta close parentheses

Rearrange into the form given in the question

table row cell open parentheses b cos theta close parentheses y minus b squared sin theta cos theta end cell equals cell open parentheses a sin theta close parentheses x minus a squared sin theta cos theta end cell row cell a squared sin theta cos theta minus b squared sin theta cos theta end cell equals cell open parentheses a sin theta close parentheses x minus open parentheses b cos theta close parentheses y end cell end table

Factorise out table row blank blank cell sin theta cos theta end cell end table to get the final answer

open parentheses a sin theta close parentheses x minus open parentheses b cos theta close parentheses y equals open parentheses a squared minus b squared close parentheses sin theta cos theta

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Mark Curtis

Author: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.