Tangents & Normals to Hyperbolas (Edexcel A Level Further Maths): Revision Note

Exam code: 9FM0

Mark Curtis

Last updated

Tangents & normals to hyperbolas

What is a tangent or a normal to a hyperbola at a general point?

  • The position of the general point P open parentheses a cosh theta comma space b sinh theta close parentheses or P open parentheses a sec theta comma space b tan theta close parentheses on the hyperbola x squared over a squared minus y squared over b squared equals 1 depends on theta

  • It is possible to calculate equations of tangents and normals at P open parentheses a cosh theta comma space b sinh theta close parentheses or P open parentheses a sec theta comma space b tan theta close parentheses

    • where the coefficients are in terms of theta

      • i.e. as P varies, the equations vary

The hyperbola x^2/a^2-y^2/b^2=1 shown with a point P with coordinates (a cosh theta, b sinh theta) or P(a sec theta. b tan theta). The tangent and the normal at P are drawn on the graph.
  • In general

    • at the point P open parentheses a cosh theta comma space b sinh theta close parentheses on the hyperbola x squared over a squared minus y squared over b squared equals 1

      • open parentheses b cosh theta close parentheses x minus open parentheses a sinh theta close parentheses y equals a b is the tangent

      • open parentheses a sinh theta close parentheses x plus open parentheses b cosh theta close parentheses y equals open parentheses a squared plus b squared close parentheses sinh theta cosh theta is the normal

    • at the point P open parentheses a sec theta comma space b tan theta close parentheses on the hyperbola x squared over a squared minus y squared over b squared equals 1

      • open parentheses b sec theta close parentheses x minus open parentheses a tan theta close parentheses y equals a b is the tangent

      • open parentheses a sin theta close parentheses x plus b y equals open parentheses a squared plus b squared close parentheses tan theta is the normal

  • Be careful with infinite gradients at the vertices

    • e.g. the equation of the tangent at open parentheses a comma space 0 close parentheses is x equals a

Examiner Tips and Tricks

You are not expected to remember the general formulae for tangents and normals, but you are expected to be able to work them out using the steps below.

How do I find the equation of a tangent to a hyperbola?

  • To find the equation of the tangent to the hyperbola x squared over a squared minus y squared over b squared equals 1 at the general point P open parentheses a cosh theta comma space b sinh theta close parentheses or P open parentheses a sec theta comma space b tan theta close parentheses:

  • STEP 1
    Find the gradient m subscript T of the tangent at P open parentheses a cosh theta comma space b sinh theta close parentheses or P open parentheses a sec theta comma space b tan theta close parentheses in terms of theta

    • either by implicit differentiation of x squared over a squared minus y squared over b squared equals 1 to find fraction numerator straight d y over denominator straight d x end fraction

      • then substituting x equals a cosh theta and y equals b sinh theta (or x equals a sec theta and y equals b tan theta) into the result

    • or by parametric differentiation of x equals a cosh theta and y equals b sinh theta (or x equals a sec theta and y equals b tan theta)

      • using fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator straight d y over denominator straight d theta end fraction cross times fraction numerator straight d theta over denominator straight d x end fraction equals fraction numerator open parentheses fraction numerator straight d y over denominator straight d theta end fraction close parentheses over denominator open parentheses fraction numerator straight d x over denominator straight d theta end fraction close parentheses end fraction

  • STEP 2
    Substitute into the equation of a straight line y minus y subscript 1 equals m subscript T open parentheses x minus x subscript 1 close parentheses the following:

    • m subscript T in terms of theta

    • x subscript 1 equals a cosh theta (or x subscript 1 equals a sec theta)

    • y subscript 1 equals b sinh theta (or y subscript 1 equals b tan theta)

    • and simplify using hyperbolic or trig identities

Examiner Tips and Tricks

It is possible to make y the subject of x squared over a squared minus y squared over b squared equals 1 to find fraction numerator straight d y over denominator straight d x end fraction, i.e. y equals plus-or-minus square root of b squared open parentheses x squared over a squared minus 1 close parentheses end root, but differentiating this is more messy than implicit or parametric differentiation!

Worked Example

Show that the tangent to the hyperbola x squared over 16 minus y squared over 9 equals 1 at the point P open parentheses 4 cosh theta comma space 3 sinh theta close parentheses has the equation

open parentheses 3 cosh theta close parentheses x minus open parentheses 4 sinh theta close parentheses y equals 12

Answer:

The tangent has the equation y minus y subscript 1 equals m subscript T open parentheses x minus x subscript 1 close parentheses

Method 1

Use implicit differentiation to differentiate x squared over 16 minus y squared over 9 equals 1

fraction numerator 2 x over denominator 16 end fraction minus fraction numerator 2 y over denominator 9 end fraction fraction numerator straight d y over denominator straight d x end fraction equals 0

Substitute x equals 4 cosh theta and y equals 3 sinh theta into the result and rearrange for fraction numerator straight d y over denominator straight d x end fraction

table row cell fraction numerator 2 open parentheses 4 cosh theta close parentheses over denominator 16 end fraction minus fraction numerator 2 open parentheses 3 sinh theta close parentheses over denominator 9 end fraction fraction numerator straight d y over denominator straight d x end fraction end cell equals 0 row cell fraction numerator up diagonal strike 2 open parentheses 3 sinh theta close parentheses over denominator 9 end fraction fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator up diagonal strike 2 open parentheses 4 cosh theta close parentheses over denominator 16 end fraction end cell row cell fraction numerator sinh theta over denominator 3 end fraction fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator cosh theta over denominator 4 end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator 3 cosh theta over denominator 4 sinh theta end fraction end cell end table

Method 2

Use parametric differentiation to find fraction numerator straight d y over denominator straight d x end fraction from x equals 4 cosh theta and y equals 3 sinh theta

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator straight d y over denominator straight d theta end fraction cross times fraction numerator straight d theta over denominator straight d x end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator open parentheses fraction numerator straight d y over denominator straight d theta end fraction close parentheses over denominator open parentheses fraction numerator straight d x over denominator straight d theta end fraction close parentheses end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator 3 cosh theta over denominator 4 sinh theta end fraction end cell end table

After either method, substitute m subscript T equals table row blank blank cell fraction numerator 3 cosh theta over denominator 4 sinh theta end fraction end cell end table, x subscript 1 equals 4 cosh theta and y subscript 1 equals 3 sinh theta into y minus y subscript 1 equals m subscript T open parentheses x minus x subscript 1 close parentheses

y minus 3 sinh theta equals table row blank blank cell fraction numerator 3 cosh theta over denominator 4 sinh theta end fraction end cell end table open parentheses x minus 4 cosh theta close parentheses

Rearrange into the form given in the question

table row cell open parentheses 4 sinh theta close parentheses y minus 12 sinh squared theta end cell equals cell open parentheses 3 cosh theta close parentheses x minus 12 cosh squared theta end cell row cell 12 open parentheses cosh squared theta minus sinh squared theta close parentheses end cell equals cell open parentheses 3 cosh theta close parentheses x minus open parentheses 4 sinh theta close parentheses y end cell end table

Use that cosh squared theta minus sinh squared theta identical to 1 to get the final answer

open parentheses 3 cosh theta close parentheses x minus open parentheses 4 sinh theta close parentheses y equals 12

What is the tangent condition for a hyperbola?

  • The condition for a straight line y equals m x plus c to be a tangent to the hyperbola x squared over a squared minus y squared over b squared equals 1 is that the gradient m and y-intercept c of the straight line must satisfy

    • a squared m squared minus b squared equals c squared

  • You need to know how to prove this condition

    • by solving y equals m x plus c and x squared over a squared minus y squared over b squared equals 1 simultaneously

    • and forcing the discriminant to be zero

      • See the worked example below

Worked Example

Prove that, if y equals m x plus c is tangent to x squared over a squared minus y squared over b squared equals 1, then a squared m squared minus b squared equals c squared.

Answer:

First substitute y equals m x plus c into the equation x squared over a squared minus y squared over b squared equals 1

x squared over a squared minus open parentheses m x plus c close parentheses squared over b squared equals 1

It helps to

  • multiply both sides by a squared b squared

  • add the bracketed term to the right-hand side (to make expanding easier)

  • then expand and rearrange into a three-term quadratic in x

table row cell b squared x squared minus a squared open parentheses m x plus c close parentheses squared end cell equals cell a squared b squared end cell row cell b squared x squared end cell equals cell a squared b squared plus a squared open parentheses m x plus c close parentheses squared end cell row cell b squared x squared end cell equals cell a squared b squared plus a squared open parentheses m squared x squared plus 2 m c x plus c squared close parentheses end cell row 0 equals cell open parentheses a squared m squared minus b squared close parentheses x squared plus 2 a squared m c x plus a squared open parentheses b squared plus c squared close parentheses end cell end table

The solutions to this equation are the x-intercepts of the points of intersection

Force the discriminant to be zero, as a tangent only touches the hyperbola once

open parentheses 2 a squared m c close parentheses squared minus 4 open parentheses a squared m squared minus b squared close parentheses cross times a squared open parentheses b squared plus c squared close parentheses equals 0

It helps to move the second half to the other side, to make expanding easier

open parentheses 2 a squared m c close parentheses squared equals 4 open parentheses a squared m squared minus b squared close parentheses cross times a squared open parentheses b squared plus c squared close parentheses

Factorise out 4 a squared from both sides, cancel, then expand the brackets and cancel any common terms on both sides

table row cell 4 a to the power of 4 m squared c squared end cell equals cell 4 a squared open parentheses a squared m squared minus b squared close parentheses open parentheses b squared plus c squared close parentheses end cell row cell up diagonal strike 4 a squared end strike a squared m squared c squared end cell equals cell up diagonal strike 4 a squared end strike open parentheses a squared m squared minus b squared close parentheses open parentheses b squared plus c squared close parentheses end cell row cell up diagonal strike a squared m squared c squared end strike end cell equals cell a squared m squared b squared plus up diagonal strike a squared m squared c squared end strike minus b to the power of 4 minus b squared c squared end cell row 0 equals cell a squared m squared b squared minus b to the power of 4 minus b squared c squared end cell end table

Factorise out b squared and cancel (as b not equal to 0 in x squared over a squared plus y squared over b squared equals 1)

table row 0 equals cell up diagonal strike b squared end strike open parentheses a squared m squared minus b squared minus c squared close parentheses end cell row 0 equals cell a squared m squared minus b squared minus c squared end cell end table

This rearranges to the answer

a squared m squared minus b squared equals c squared

How do I find the equation of a normal to a hyperbola?

  • To find the equation of the normal to the hyperbola x squared over a squared minus y squared over b squared equals 1 at the general point P open parentheses a cosh theta comma space b sinh theta close parentheses or P open parentheses a sec theta comma space b tan theta close parentheses:

    • follow the previous steps for finding the equation of a tangent

      • but use y minus y subscript 1 equals m subscript N open parentheses x minus x subscript 1 close parentheses as the equation of the normal

      • where m subscript N equals negative 1 over m subscript T is the negative reciprocal of the tangent gradient

Worked Example

Show that the normal to the hyperbola x squared over a squared minus y squared over b squared equals 1 at the point P open parentheses a sec theta comma space b tan theta close parentheses has the equation

open parentheses a sin theta close parentheses x plus b y equals open parentheses a squared plus b squared close parentheses tan theta

Answer:

The normal has the equation y minus y subscript 1 equals m subscript N open parentheses x minus x subscript 1 close parentheses where the normal gradient is the negative reciprocal of the tangent gradient, m subscript N equals negative 1 over m subscript T

Method 1

Use implicit differentiation to differentiate x squared over a squared minus y squared over b squared equals 1

fraction numerator 2 x over denominator a squared end fraction minus fraction numerator 2 y over denominator b squared end fraction fraction numerator straight d y over denominator straight d x end fraction equals 0

Substitute x equals a sec theta and y equals b tan theta into the result and rearrange for fraction numerator straight d y over denominator straight d x end fraction (the gradient of the tangent)

table row cell fraction numerator 2 open parentheses a sec theta close parentheses over denominator a squared end fraction minus fraction numerator 2 open parentheses b tan theta close parentheses over denominator b squared end fraction fraction numerator straight d y over denominator straight d x end fraction end cell equals 0 row cell negative fraction numerator up diagonal strike 2 open parentheses b tan theta close parentheses over denominator b squared end fraction fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative fraction numerator up diagonal strike 2 open parentheses a sec theta close parentheses over denominator a squared end fraction end cell row cell fraction numerator tan theta over denominator b end fraction fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator sec theta over denominator a end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator b sec theta over denominator a tan theta end fraction end cell end table

Method 2

Use parametric differentiation to find fraction numerator straight d y over denominator straight d x end fraction (the gradient of the tangent) from x equals a sec theta and y equals b tan theta

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator straight d y over denominator straight d theta end fraction cross times fraction numerator straight d theta over denominator straight d x end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator open parentheses fraction numerator straight d y over denominator straight d theta end fraction close parentheses over denominator open parentheses fraction numerator straight d x over denominator straight d theta end fraction close parentheses end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator b sec squared theta over denominator a sec theta tan theta end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator b sec theta over denominator a tan theta end fraction end cell end table

After either method, convert the tangent gradient into the normal gradient (e.g. find the negative reciprocal, or use m subscript N equals negative 1 over m subscript T)

m subscript N equals negative fraction numerator a tan theta over denominator b sec theta end fraction

Substitute m subscript N equals negative fraction numerator a tan theta over denominator b sec theta end fraction, x subscript 1 equals a sec theta and y subscript 1 equals b tan theta into y minus y subscript 1 equals m subscript N open parentheses x minus x subscript 1 close parentheses

y minus b tan theta equals table row blank blank cell negative fraction numerator a tan theta over denominator b sec theta end fraction end cell end table open parentheses x minus a sec theta close parentheses

Rearrange into the form given in the question

table row cell y minus b tan theta end cell equals cell negative open parentheses fraction numerator a tan theta over denominator b sec theta end fraction close parentheses x plus a squared over b tan theta end cell row cell b y minus b squared tan theta end cell equals cell negative open parentheses fraction numerator a tan theta over denominator sec theta end fraction close parentheses x plus a squared tan theta end cell row cell open parentheses fraction numerator a tan theta over denominator sec theta end fraction close parentheses x plus b y end cell equals cell open parentheses a squared plus b squared close parentheses tan theta end cell end table

Simplify fraction numerator tan theta over denominator sec theta end fraction

table row cell fraction numerator tan theta over denominator sec theta end fraction end cell identical to cell fraction numerator sin theta over denominator cos theta end fraction divided by fraction numerator 1 over denominator cos theta end fraction end cell row blank identical to cell fraction numerator sin theta over denominator up diagonal strike cos theta end strike end fraction cross times fraction numerator up diagonal strike cos theta end strike over denominator 1 end fraction end cell row blank identical to cell sin theta end cell end table

The answer can now be written in the form given in the question

open parentheses a sin theta close parentheses x plus b y equals open parentheses a squared plus b squared close parentheses tan theta

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Mark Curtis

Author: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.