Tangents & Normals to Parabolas (Edexcel A Level Further Maths): Revision Note

Exam code: 9FM0

Mark Curtis

Last updated

Tangents & normals to parabolas

What is a tangent or a normal to a parabola at a general point?

  • The position of the general point P open parentheses a t squared comma space 2 a t close parentheses on the parabola y squared equals 4 a x depends on t

  • It is possible to calculate equations of tangents and normals at P open parentheses a t squared comma space 2 a t close parentheses

    • where the coefficients are in terms of t

      • i.e. as P varies, the equations vary

Graph of a parabola y^2 = 4ax with axes, showing point P(at^2, 2at), tangent and normal lines at P.
  • In general

    • at the point P open parentheses a t squared comma space 2 a t close parentheses on the parabola y squared equals 4 a x

      • negative x plus t y equals a t squared is the tangent

      • t x plus y equals 2 a t plus a t cubed is the normal

  • Be careful with the infinite gradient at the vertex

    • The equation of the tangent at open parentheses 0 comma space 0 close parentheses is x equals 0

Examiner Tips and Tricks

You are not expected to remember the general formulae for tangents and normals, but you are expected to be able to work them out using the steps below.

How do I find the equation of a tangent to a parabola?

  • To find the equation of the tangent to the parabola y squared equals 4 a x at the general point P open parentheses a t squared comma space 2 a t close parentheses:

  • STEP 1
    Find the gradient m subscript T of the tangent at P open parentheses a t squared comma space 2 a t close parentheses in terms of t

    • either by implicit differentiation of y squared equals 4 a x to find fraction numerator straight d y over denominator straight d x end fraction

      • then substituting x equals a t squared and y equals 2 a t into the result

    • or by parametric differentiation of x equals a t squared and y equals 2 a t

      • using fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator straight d y over denominator straight d t end fraction cross times fraction numerator straight d t over denominator straight d x end fraction equals fraction numerator open parentheses fraction numerator straight d y over denominator straight d t end fraction close parentheses over denominator open parentheses fraction numerator straight d x over denominator straight d t end fraction close parentheses end fraction

  • STEP 2
    Substitute into the equation of a straight line y minus y subscript 1 equals m subscript T open parentheses x minus x subscript 1 close parentheses the following:

    • m subscript T in terms of t

    • x subscript 1 equals a t squared

    • y subscript 1 equals 2 a t

    • and simplify

Examiner Tips and Tricks

It is possible to make y the subject of y squared equals 4 a x to find fraction numerator straight d y over denominator straight d x end fraction, i.e. y equals plus-or-minus square root of 4 a x end root, but differentiating this is more messy than implicit or parametric differentiation!

Worked Example

Show that the tangent to the parabola y squared equals 8 x at the point P open parentheses 2 t squared comma space 4 t close parentheses has the equation

negative x plus t y equals 2 t squared

Answer:

The tangent has the equation y minus y subscript 1 equals m subscript T open parentheses x minus x subscript 1 close parentheses

Method 1

Use implicit differentiation to differentiate y squared equals 8 x

2 y fraction numerator straight d y over denominator straight d x end fraction equals 8

Substitute y equals 4 t into the result and rearrange for fraction numerator straight d y over denominator straight d x end fraction

table row cell 2 open parentheses 4 t close parentheses fraction numerator straight d y over denominator straight d x end fraction end cell equals 8 row cell 8 t fraction numerator straight d y over denominator straight d x end fraction end cell equals 8 row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell 1 over t end cell end table

Method 2

Use parametric differentiation to find fraction numerator straight d y over denominator straight d x end fraction from x equals 2 t squared and y equals 4 t

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator straight d y over denominator dt end fraction cross times fraction numerator straight d t over denominator straight d x end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator open parentheses fraction numerator straight d y over denominator straight d t end fraction close parentheses over denominator open parentheses fraction numerator straight d x over denominator straight d t end fraction close parentheses end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator 4 over denominator 4 t end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell 1 over t end cell end table

After either method, substitute m subscript T equals 1 over t, x subscript 1 equals 2 t squared and y subscript 1 equals 4 t into y minus y subscript 1 equals m subscript T open parentheses x minus x subscript 1 close parentheses

y minus 4 t equals 1 over t open parentheses x minus 2 t squared close parentheses

Rearrange into the form given in the question

table row cell t y minus 4 t squared end cell equals cell x minus 2 t squared end cell row cell negative x plus t y end cell equals cell negative 2 t squared plus 4 t squared end cell end table

Collect like terms to get the final answer

negative x plus t y equals 2 t squared

What is the tangent condition for a parabola?

  • The condition for a straight line y equals m x plus c to be a tangent to the parabola y squared equals 4 a x is that the gradient m and y-intercept c of the straight line must satisfy

    • a equals m c

  • You need to know how to prove this condition

    • by solving y equals m x plus c and y squared equals 4 a x simultaneously

    • and forcing the discriminant to be zero

      • See the worked example below

Worked Example

Prove that, if y equals m x plus c is tangent to y squared equals 4 a x, then a m equals c.

Answer:

First substitute y equals m x plus c into the equation y squared equals 4 a x

open parentheses m x plus c close parentheses squared equals 4 a x

Expand and rearrange into a three-term quadratic in x

table row cell m squared x squared plus 2 m c x plus c squared end cell equals cell 4 a x end cell row cell m squared x squared plus open parentheses 2 m c minus 4 a close parentheses x plus c squared end cell equals 0 end table

The solutions to this equation are the x-intercepts of the points of intersection

Force the discriminant to be zero, as a tangent only touches the parabola once

open parentheses 2 m c minus 4 a close parentheses squared minus 4 m squared c squared equals 0

Expand and simplify

table row cell up diagonal strike 4 m squared c squared end strike minus 16 m c a plus 16 a squared up diagonal strike negative 4 m squared c squared end strike end cell equals 0 row cell up diagonal strike 16 a squared end cell equals cell up diagonal strike 16 m c a end cell end table

Divide both sides by al (as a greater than 0 in y squared equals 4 a x) to get the correct answer

a equals m c

How do I find the equation of a normal to a parabola?

  • To find the equation of the normal to the parabola y squared equals 4 a x at the general point P open parentheses a t squared comma space 2 a t close parentheses:

    • follow the previous steps for finding the equation of a tangent

      • but use y minus y subscript 1 equals m subscript N open parentheses x minus x subscript 1 close parentheses as the equation of the normal

      • where m subscript N equals negative 1 over m subscript T is the negative reciprocal of the tangent gradient

Worked Example

Show that the normal to the parabola y squared equals 4 a x at the point P open parentheses a t squared comma space 2 a t close parentheses has the equation

t x plus y equals 2 a t plus a t cubed

Answer:

The normal has the equation y minus y subscript 1 equals m subscript N open parentheses x minus x subscript 1 close parentheses where the normal gradient is the negative reciprocal of the tangent gradient, m subscript N equals negative 1 over m subscript T

Method 1

Use implicit differentiation to differentiate y squared equals 4 a x

2 y fraction numerator straight d y over denominator straight d x end fraction equals 4 a

Substitute y equals 2 a t into the result and rearrange for fraction numerator straight d y over denominator straight d x end fraction (the gradient of the tangent)

table row cell 2 open parentheses 2 a t close parentheses fraction numerator straight d y over denominator straight d x end fraction end cell equals cell 4 a end cell row cell 4 a t fraction numerator straight d y over denominator straight d x end fraction end cell equals cell 4 a end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell 1 over t end cell end table

Method 2

Use parametric differentiation to find fraction numerator straight d y over denominator straight d x end fraction (the gradient of the tangent) from x equals a t squared and y equals 2 a t

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator straight d y over denominator straight d t end fraction cross times fraction numerator straight d t over denominator straight d x end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator open parentheses fraction numerator straight d y over denominator straight d t end fraction close parentheses over denominator open parentheses fraction numerator straight d x over denominator straight d t end fraction close parentheses end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator 2 a over denominator 2 a t end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell 1 over t end cell end table

After either method, convert the tangent gradient into the normal gradient (e.g. find the negative reciprocal, or use m subscript N equals negative 1 over m subscript T)

m subscript N equals negative t

Substitute m subscript N equals negative t, x subscript 1 equals a t squared and y subscript 1 equals 2 a t into y minus y subscript 1 equals m subscript N open parentheses x minus x subscript 1 close parentheses

y minus 2 a t equals negative t open parentheses x minus a t squared close parentheses

Rearrange into the form given in the question

table row cell y minus 2 a t end cell equals cell negative t x plus a t cubed end cell row cell t x plus y minus 2 a t end cell equals cell a t cubed end cell end table

Add 2 a t to both sides

t x plus y equals 2 a t plus a t cubed

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Mark Curtis

Author: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.