Tangents & Normals to Rectangular Hyperbolas (Edexcel A Level Further Maths): Revision Note

Exam code: 9FM0

Last updated

Tangents & normals to rectangular hyperbolas

What is a tangent or normal to a rectangular hyperbola at a general point?

  • The position of the general point P open parentheses c t comma space c over t close parentheses on the rectangular hyperbola x y equals c squared depends on t

  • It is possible to calculate equations of tangents and normals at P open parentheses c t comma space c over t close parentheses

    • where the coefficients are in terms of t

      • i.e. as P varies, the equations vary

Graph of rectangular hyperbola xy = c^2 with axes, point P(ct, c/t), and tangent and normal lines labelled at P.
  • In general

    • at the point P open parentheses c t comma space c over t close parentheses on the rectangular hyperbola x y equals c squared

      • x plus t squared y equals 2 c t is the tangent

      • t cubed x minus t y equals c open parentheses t to the power of 4 minus 1 close parentheses is the normal

Examiner Tips and Tricks

You are not expected to remember the general formulae for tangents and normals, but you are expected to be able to work them out using the steps below.

How do I find the equation of a tangent to a rectangular hyperbola?

  • To find the equation of the tangent to the rectangular hyperbola x y equals c squared at the general point P open parentheses c t comma space c over t close parentheses:

  • STEP 1
    Find the gradient m subscript T of the tangent at P open parentheses c t comma space c over t close parentheses in terms of t

    • either by implicit differentiation of x y equals c squared to find fraction numerator straight d y over denominator straight d x end fraction

      • then substituting x equals c t and y equals c over t into the result

    • or by parametric differentiation of x equals c t and y equals c over t

      • using fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator straight d y over denominator straight d t end fraction cross times fraction numerator straight d t over denominator straight d x end fraction equals fraction numerator open parentheses fraction numerator straight d y over denominator straight d t end fraction close parentheses over denominator open parentheses fraction numerator straight d x over denominator straight d t end fraction close parentheses end fraction

    • or by making y the subject of x y equals c squared and finding fraction numerator straight d y over denominator straight d x end fraction

      • i.e. y equals c squared over x equals c squared x to the power of negative 1 end exponent then differentiate

  • STEP 2
    Substitute into the equation of a straight line y minus y subscript 1 equals m subscript T open parentheses x minus x subscript 1 close parentheses the following:

    • m subscript T in terms of t

    • x subscript 1 equals c t

    • y subscript 1 equals c over t

    • and simplify

Worked Example

Show that the tangent to the rectangular hyperbola x y equals 25 at the point P open parentheses 5 t comma space 5 over t close parentheses has the equation

x plus t squared y equals 10 t

Answer:

The tangent has the equation y minus y subscript 1 equals m subscript T open parentheses x minus x subscript 1 close parentheses

Method 1

Use implicit differentiation to differentiate x y equals 25

table row cell 1 cross times y plus x cross times fraction numerator straight d y over denominator straight d x end fraction end cell equals 0 row cell y plus x fraction numerator straight d y over denominator straight d x end fraction end cell equals 0 end table

Substitute x equals 5 t and y equals 5 over t into the result and rearrange for fraction numerator straight d y over denominator straight d x end fraction

table row cell open parentheses 5 over t close parentheses plus open parentheses 5 t close parentheses fraction numerator straight d y over denominator straight d x end fraction end cell equals 0 row cell 5 t fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative 5 over t end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative 1 over t squared end cell end table

Method 2

Use parametric differentiation to find fraction numerator straight d y over denominator straight d x end fraction from x equals 5 t and y equals 5 over t

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator straight d y over denominator straight d t end fraction cross times fraction numerator straight d t over denominator straight d x end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator open parentheses fraction numerator straight d y over denominator straight d t end fraction close parentheses over denominator open parentheses fraction numerator straight d x over denominator straight d t end fraction close parentheses end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator open parentheses negative 5 over t squared close parentheses over denominator 5 end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative 5 over t squared divided by 5 end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative fraction numerator up diagonal strike 5 over denominator t squared end fraction cross times fraction numerator 1 over denominator up diagonal strike 5 end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative 1 over t squared end cell row blank blank blank end table

Method 3

Make y the subject of x y equals 25

y equals 25 over x equals 25 x to the power of negative 1 end exponent

Find fraction numerator straight d y over denominator straight d x end fraction using standard differentiation

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative 25 x to the power of negative 2 end exponent end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative 25 over x squared end cell end table

Substitute in x equals 5 t and simplify

table row blank blank blank row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative 25 over open parentheses 5 t close parentheses squared end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative 1 over t squared end cell end table

After any of the methods above, substitute m subscript T equals table row blank blank minus end table table row blank blank cell 1 over t squared end cell end table, x subscript 1 equals 5 t and y subscript 1 equals 5 over t into y minus y subscript 1 equals m subscript T open parentheses x minus x subscript 1 close parentheses

y minus 5 over t equals negative 1 over t squared open parentheses x minus 5 t close parentheses

Rearrange into the form given in the question

table row cell t squared y minus 5 t end cell equals cell negative open parentheses x minus 5 t close parentheses end cell row cell t squared y minus 5 t end cell equals cell negative x plus 5 t end cell row cell x plus t squared y end cell equals cell 5 t plus 5 t end cell end table

This simplifies to the final answer

x plus t squared y equals 10 t

How do I find the equation of a normal to a rectangular hyperbola?

  • To find the equation of the normal to the rectangular hyperbola x y equals c squared at the general point P open parentheses c t comma space c over t close parentheses:

    • follow the previous steps for finding the equation of a tangent

      • but use y minus y subscript 1 equals m subscript N open parentheses x minus x subscript 1 close parentheses as the equation of the normal

      • where m subscript N equals negative 1 over m subscript T is the negative reciprocal of the tangent gradient

Worked Example

Show that the normal to the rectangular hyperbola x y equals c squared at the point P open parentheses c t comma space c over t close parentheses has the equation

t cubed x minus t y equals c open parentheses t to the power of 4 minus 1 close parentheses

Answer:

The normal has the equation y minus y subscript 1 equals m subscript N open parentheses x minus x subscript 1 close parentheses where the normal gradient is the negative reciprocal of the tangent gradient, m subscript N equals negative 1 over m subscript T

Method 1

Use implicit differentiation to differentiate x y equals c squared

table row cell 1 cross times y plus x cross times fraction numerator straight d y over denominator straight d x end fraction end cell equals 0 row cell y plus x fraction numerator straight d y over denominator straight d x end fraction end cell equals 0 end table

Substitute x equals c t and y equals c over t into the result and rearrange for fraction numerator straight d y over denominator straight d x end fraction (the gradient of the tangent)

table row cell open parentheses c over t close parentheses plus open parentheses c t close parentheses fraction numerator straight d y over denominator straight d x end fraction end cell equals 0 row cell c t fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative c over t end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative 1 over t squared end cell end table

Method 2

Use parametric differentiation to find fraction numerator straight d y over denominator straight d x end fraction (the gradient of the tangent) from x equals c t and y equals c over t

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator straight d y over denominator straight d t end fraction cross times fraction numerator straight d t over denominator straight d x end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator open parentheses fraction numerator straight d y over denominator straight d t end fraction close parentheses over denominator open parentheses fraction numerator straight d x over denominator straight d t end fraction close parentheses end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator open parentheses negative c over t squared close parentheses over denominator c end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative c over t squared divided by c end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative fraction numerator up diagonal strike c over denominator t squared end fraction cross times fraction numerator 1 over denominator up diagonal strike c end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative 1 over t squared end cell row blank blank blank end table

Method 3

Make y the subject of x y equals c squared

y equals c squared over x equals c squared x to the power of negative 1 end exponent

Find fraction numerator straight d y over denominator straight d x end fraction using standard differentiation

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative c squared x to the power of negative 2 end exponent end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative c squared over x squared end cell end table

Substitute in x equals c t and simplify

table row blank blank blank row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative c squared over open parentheses c t close parentheses squared end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative 1 over t squared end cell end table

After any of the methods above, convert the tangent gradient into the normal gradient (e.g. find the negative reciprocal, or use m subscript N equals negative 1 over m subscript T)

m subscript N equals t squared

Substitute m subscript N equals t squared, x subscript 1 equals c t and y subscript 1 equals c over t into y minus y subscript 1 equals m subscript N open parentheses x minus x subscript 1 close parentheses

y minus c over t equals t squared open parentheses x minus c t close parentheses

Rearrange into the form given in the question

table row cell t y minus c end cell equals cell t cubed open parentheses x minus c t close parentheses end cell row cell t y minus c end cell equals cell t cubed x minus c t to the power of 4 end cell row cell c t to the power of 4 minus c end cell equals cell t cubed x minus t y end cell end table

Factorise out table row blank blank c end table to get the final answer

t cubed x minus t y equals c open parentheses t to the power of 4 minus 1 close parentheses

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves: