Leibnitz's Theorem (Edexcel A Level Further Maths): Revision Note

Exam code: 9FM0

Mark Curtis

Last updated

Leibnitz's theorem

What is Leibnitz's theorem?

  • Leibnitz's theorem states that the nth derivative of a product of functions, y equals straight f open parentheses x close parentheses straight g open parentheses x close parentheses, is given by

    • table row cell fraction numerator straight d to the power of n y over denominator straight d x to the power of n end fraction end cell equals cell open parentheses table row n row 0 end table close parentheses straight f to the power of open parentheses 0 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses n close parentheses end exponent open parentheses x close parentheses plus open parentheses table row n row 1 end table close parentheses straight f to the power of open parentheses 1 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses n minus 1 close parentheses end exponent open parentheses x close parentheses plus open parentheses table row n row 2 end table close parentheses straight f to the power of open parentheses 2 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses n minus 2 close parentheses end exponent open parentheses x close parentheses plus... plus open parentheses table row n row r end table close parentheses straight f to the power of open parentheses n minus r close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses plus... end cell row blank blank cell... plus open parentheses table row n row cell n minus 1 end cell end table close parentheses straight f to the power of open parentheses n minus 1 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses 1 close parentheses end exponent open parentheses x close parentheses plus open parentheses table row n row n end table close parentheses straight f to the power of open parentheses n close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses 0 close parentheses end exponent open parentheses x close parentheses end cell end table

    • where

      • straight f to the power of open parentheses 0 close parentheses end exponent open parentheses x close parentheses equals straight f open parentheses x close parentheses

      • straight f to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses means the rth derivative of straight f open parentheses x close parentheses

      • and open parentheses table row n row r end table close parentheses is the binomial coefficient fraction numerator n factorial over denominator r factorial open parentheses n minus r close parentheses factorial end fraction

  • It allows you to find fraction numerator straight d to the power of n y over denominator straight d x to the power of n end fraction from y equals straight f open parentheses x close parentheses straight g open parentheses x close parentheses directly

    • without having to differentiate n times!

  • In the case when n equals 1you get the product rule

    • i.e. if y equals straight f open parentheses x close parentheses straight g open parentheses x close parentheses then

      • fraction numerator straight d y over denominator straight d x end fraction equals open parentheses table row 1 row 0 end table close parentheses straight f to the power of open parentheses 0 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses 1 close parentheses end exponent open parentheses x close parentheses plus open parentheses table row 1 row 1 end table close parentheses straight f to the power of open parentheses 1 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses 0 close parentheses end exponent open parentheses x close parentheses equals straight f open parentheses x close parentheses straight g apostrophe open parentheses x close parentheses plus straight f apostrophe open parentheses x close parentheses straight g open parentheses x close parentheses

Examiner Tips and Tricks

You need to learn Leibnitz's theorem as it is not given in the formulae booklet!

How do I use Leibnitz's theorem?

  • To use Leibnitz's theorem, it helps to write a table of derivatives then match opposite ends

    • e.g. if y equals straight e to the power of 2 x end exponent sin xfind fraction numerator straight d to the power of 4 y over denominator straight d x to the power of 4 end fraction

    • Calculate the derivatives

      r

      straight f to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses

      straight g to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses

      0

      straight e to the power of 2 x end exponent

      sin x

      1

      2 straight e to the power of 2 x end exponent

      cos x

      2

      4 straight e to the power of 2 x end exponent

      negative sin x

      3

      8 straight e to the power of 2 x end exponent

      negative cos x

      4

      16 straight e to the power of 2 x end exponent

      sin x

    • Match opposite ends (the first straight f with the last straight g, second straight f with second-to-last straight g, etc)

      r

      straight f to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses

      straight g to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses

      0

      circle enclose straight e to the power of 2 x end exponent end enclose

      sin x

      1

      box enclose 2 straight e to the power of 2 x end exponent end enclose

      cos x

      2

      4 straight e to the power of 2 x end exponent

      negative sin x

      3

      8 straight e to the power of 2 x end exponent

      box enclose negative cos x end enclose

      4

      16 straight e to the power of 2 x end exponent

      circle enclose sin x end enclose

    • Find the relevant binomial coefficients open parentheses table row 4 row 0 end table close parentheses, open parentheses table row 4 row 1 end table close parentheses, open parentheses table row 4 row 2 end table close parentheses, open parentheses table row 4 row 3 end table close parentheses and open parentheses table row 4 row 4 end table close parentheses

      • 1, 4, 6, 4, 1

    • Substitute into Leibnitz's theorem

      • fraction numerator straight d to the power of 4 y over denominator straight d x to the power of 4 end fraction equals 1 cross times straight e to the power of 2 x end exponent sin x plus 4 cross times 2 straight e to the power of 2 x end exponent open parentheses negative cos x close parentheses plus 6 cross times 4 straight e to the power of 2 x end exponent open parentheses negative sin x close parentheses plus 4 cross times 8 straight e to the power of 2 x end exponent cos x plus 1 cross times 16 straight e to the power of 2 x end exponent sin x

    • Simplify and collect like terms

      • table row cell fraction numerator straight d to the power of 4 y over denominator straight d x to the power of 4 end fraction end cell equals cell straight e to the power of 2 x end exponent sin x minus 8 straight e to the power of 2 x end exponent cos x italic minus 24 straight e to the power of 2 x end exponent sin x plus 32 straight e to the power of 2 x end exponent cos x plus 16 straight e to the power of 2 x end exponent sin x end cell row blank equals cell negative 7 straight e to the power of 2 x end exponent sin x plus 24 straight e to the power of 2 x end exponent cos x end cell end table

Examiner Tips and Tricks

A useful check, before simplifying, is that the nth derivative should have n+1 terms (e.g. fraction numerator straight d to the power of 4 y over denominator straight d x to the power of 4 end fraction should have 5 terms).

How do I prove general results using Leibnitz's theorem?

  • You can use Leibnitz's theorem to prove general results like the following:

    • If y equals x squared straight e to the power of 2 x end exponent, prove that fraction numerator straight d to the power of n y over denominator straight d x to the power of n end fraction equals 2 to the power of n minus 2 end exponent straight e to the power of 2 x end exponent open parentheses 4 x squared plus 4 n x plus n to the power of italic 2 minus n close parentheses for n element of straight natural numbers

  • You need to know the following properties of the binomial coefficients

    • open parentheses table row n row 0 end table close parentheses equals 1, open parentheses table row n row 1 end table close parentheses equals n and by symmetry open parentheses table row n row n end table close parentheses equals 1, open parentheses table row n row cell n minus 1 end cell end table close parentheses equals n

    • Higher-order coefficients can be simplified

      • open parentheses table row n row 2 end table close parentheses equals fraction numerator n factorial over denominator 2 factorial open parentheses n minus 2 close parentheses factorial end fraction equals fraction numerator n open parentheses n minus 1 close parentheses up diagonal strike open parentheses n minus 2 close parentheses factorial end strike over denominator 2 cross times 1 cross times up diagonal strike open parentheses n minus 2 close parentheses factorial end strike end fraction equals 1 half n open parentheses n minus 1 close parentheses

      • open parentheses table row n row 3 end table close parentheses equals fraction numerator n factorial over denominator 3 factorial open parentheses n minus 3 close parentheses factorial end fraction equals fraction numerator n open parentheses n minus 1 close parentheses open parentheses n minus 2 close parentheses up diagonal strike open parentheses n minus 3 close parentheses factorial end strike over denominator 3 cross times 2 cross times 1 cross times up diagonal strike open parentheses n minus 3 close parentheses factorial end strike end fraction equals 1 over 6 n open parentheses n minus 1 close parentheses open parentheses n minus 2 close parentheses

      • etc.

  • You need to be able to spot patterns in the derivatives

    • See the worked example below

Worked Example

Using Leibnitz's theorem,

(a) find a and b such that fraction numerator straight d to the power of 6 y over denominator straight d x to the power of 6 end fraction equals a plus b ln x where y equals x to the power of 6 ln x.

(b) prove that if y equals x squared straight e to the power of 2 x end exponent then fraction numerator straight d to the power of n y over denominator straight d x to the power of n end fraction equals 2 to the power of n minus 2 end exponent straight e to the power of 2 x end exponent open parentheses 4 x squared plus 4 n x plus n to the power of italic 2 minus n close parentheses for n element of straight natural numbers.

Answer:

(a)

Let straight f open parentheses x close parentheses equals x to the power of 6 and straight g open parentheses x close parentheses equals ln x

Work out a table of derivatives

r

straight f to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses

straight g to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses

0

x to the power of 6

ln x

1

6 x to the power of 5

x to the power of negative 1 end exponent

2

30 x to the power of 4

negative x to the power of negative 2 end exponent

3

120 x cubed

2 x to the power of negative 3 end exponent

4

360 x squared

negative 6 x to the power of negative 4 end exponent

5

720 x

24 x to the power of negative 5 end exponent

6

720

120 x to the power of negative 6 end exponent

Match opposite ends (the first straight f with the last straight g, second straight f with second-to-last straight g, etc)

r

straight f to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses

straight g to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses

0

circle enclose x to the power of 6 end enclose

ln x

1

box enclose 6 x to the power of 5 end enclose

x to the power of negative 1 end exponent

2

30 x to the power of 4

negative x to the power of negative 2 end exponent

3

120 x cubed

2 x to the power of negative 3 end exponent

4

360 x squared

negative 6 x to the power of negative 4 end exponent

5

720 x

box enclose 24 x to the power of negative 5 end exponent end enclose

6

720

circle enclose negative 120 x to the power of negative 6 end exponent end enclose

Find the binomial coefficients open parentheses table row 6 row 0 end table close parentheses, open parentheses table row 6 row 1 end table close parentheses, open parentheses table row 6 row 2 end table close parentheses, ..., open parentheses table row 6 row 6 end table close parentheses

1, 6, 15, 20, 15, 6, 1

Leibnitz's theorem for n equals 6 is

table row cell fraction numerator straight d to the power of 6 y over denominator straight d x to the power of 6 end fraction end cell equals cell open parentheses table row 6 row 0 end table close parentheses straight f to the power of open parentheses 0 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses 6 close parentheses end exponent open parentheses x close parentheses plus open parentheses table row 6 row 1 end table close parentheses straight f to the power of open parentheses 1 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses 5 close parentheses end exponent open parentheses x close parentheses plus open parentheses table row 6 row 2 end table close parentheses straight f to the power of open parentheses 2 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses 4 close parentheses end exponent open parentheses x close parentheses plus... end cell row blank blank cell... plus open parentheses table row 6 row 5 end table close parentheses straight f to the power of open parentheses 5 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses 1 close parentheses end exponent open parentheses x close parentheses plus open parentheses table row 6 row 6 end table close parentheses straight f to the power of open parentheses 6 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses 0 close parentheses end exponent open parentheses x close parentheses end cell end table

Substitute the above into Leibnitz's theorem

fraction numerator straight d to the power of 6 y over denominator straight d x to the power of 6 end fraction equals 1 cross times x to the power of 6 cross times open parentheses negative 120 x to the power of negative 6 end exponent close parentheses plus 6 cross times 6 x to the power of 5 cross times 24 x to the power of negative 5 end exponent plus 15 cross times 30 x to the power of 4 cross times open parentheses negative 6 x to the power of negative 4 end exponent close parentheses plus...
20 cross times 120 x cubed cross times 2 x to the power of negative 3 end exponent plus 15 cross times 360 x squared cross times open parentheses negative x to the power of negative 2 end exponent close parentheses plus 6 cross times 720 x cross times x to the power of negative 1 end exponent plus 1 cross times 720 cross times ln x

Simplify each term

fraction numerator straight d to the power of 6 y over denominator straight d x to the power of 6 end fraction equals negative 120 plus 864 minus 2700 plus 4800 minus 5400 plus 4320 plus 720 ln x

Collect like terms

fraction numerator straight d to the power of 6 y over denominator straight d x to the power of 6 end fraction equals 1764 plus 720 ln x

This is now in the form given in the question, fraction numerator straight d to the power of 6 y over denominator straight d x to the power of 6 end fraction equals a plus b ln x, so state a and b

a equals 1764 space and space b equals 720

(b)

Start by writing a table of derivatives for straight f open parentheses x close parentheses equals x squared and straight g open parentheses x close parentheses equals straight e to the power of 2 x end exponent

  • Notice that x squared eventually differentiates to zero

  • Add in a few rows at the bottom for n-2, n-1, n

r

straight f to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses

straight g to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses

0

x squared

straight e to the power of 2 x end exponent

1

2 x

2 straight e to the power of 2 x end exponent

2

2

4 straight e to the power of 2 x end exponent

3

0

8 straight e to the power of 2 x end exponent

4

0

16 straight e to the power of 2 x end exponent

...

...

...

n-2

0

n-1

0

n

0

Spot a general rule / pattern in the straight g derivatives to find straight g to the power of open parentheses n close parentheses end exponent open parentheses x close parentheses

  • The coefficients of straight e to the power of 2 x end exponent are powers of 2

straight g to the power of open parentheses n close parentheses end exponent open parentheses x close parentheses equals 2 to the power of n straight e to the power of 2 x end exponent

Use this rule to backfill straight g to the power of open parentheses n minus 1 close parentheses end exponent open parentheses x close parentheses and straight g to the power of open parentheses n minus 2 close parentheses end exponent open parentheses x close parentheses

r

straight f to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses

straight g to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses

0

x squared

straight e to the power of 2 x end exponent

1

2 x

2 straight e to the power of 2 x end exponent

2

2

4 straight e to the power of 2 x end exponent

3

0

8 straight e to the power of 2 x end exponent

4

0

16 straight e to the power of 2 x end exponent

...

...

...

n-2

0

2 to the power of n minus 2 end exponent straight e to the power of 2 x end exponent

n-1

0

2 to the power of n minus 1 end exponent straight e to the power of 2 x end exponent

n

0

2 to the power of n straight e to the power of 2 x end exponent

Match opposite ends (the first straight f with the last straight g, second straight f with second-to-last straight g, etc)

  • This makes all terms after the third term equal to zero

r

straight f to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses

straight g to the power of open parentheses r close parentheses end exponent open parentheses x close parentheses

0

circle enclose x squared end enclose

straight e to the power of 2 x end exponent

1

box enclose 2 x end enclose

2 straight e to the power of 2 x end exponent

2

2

4 straight e to the power of 2 x end exponent

3

0

8 straight e to the power of 2 x end exponent

4

0

16 straight e to the power of 2 x end exponent

...

...

...

n-2

0

2 to the power of n minus 2 end exponent straight e to the power of 2 x end exponent

n-1

0

box enclose 2 to the power of n minus 1 end exponent straight e to the power of 2 x end exponent end enclose

n

0

circle enclose 2 to the power of n straight e to the power of 2 x end exponent end enclose

Find and simplify the first three binomial coefficients in terms of n

table row cell open parentheses table row n row 0 end table close parentheses end cell equals 1 row cell open parentheses table row n row 1 end table close parentheses end cell equals n row cell open parentheses table row n row 2 end table close parentheses end cell equals cell fraction numerator n over denominator 2 factorial open parentheses n minus 2 close parentheses factorial end fraction equals fraction numerator n open parentheses n minus 1 close parentheses up diagonal strike open parentheses n minus 2 close parentheses factorial end strike over denominator 2 cross times 1 cross times up diagonal strike open parentheses n minus 2 close parentheses factorial end strike end fraction equals 1 half n open parentheses n minus 1 close parentheses end cell end table

Write down Leibnitz's theorem in terms of n

table row cell fraction numerator straight d to the power of n y over denominator straight d x to the power of n end fraction end cell equals cell open parentheses table row n row 0 end table close parentheses straight f to the power of open parentheses 0 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses n close parentheses end exponent open parentheses x close parentheses plus open parentheses table row n row 1 end table close parentheses straight f to the power of open parentheses 1 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses n minus 1 close parentheses end exponent open parentheses x close parentheses plus open parentheses table row n row 2 end table close parentheses straight f to the power of open parentheses 2 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses n minus 2 close parentheses end exponent open parentheses x close parentheses plus... end cell row blank blank cell... plus open parentheses table row n row cell n minus 1 end cell end table close parentheses straight f to the power of open parentheses n minus 1 close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses 1 close parentheses end exponent open parentheses x close parentheses plus open parentheses table row n row n end table close parentheses straight f to the power of open parentheses n close parentheses end exponent open parentheses x close parentheses straight g to the power of open parentheses 0 close parentheses end exponent open parentheses x close parentheses end cell end table

Substitute the above working into Leibnitz's theorem

fraction numerator straight d to the power of n y over denominator straight d x to the power of n end fraction equals 1 cross times x squared cross times 2 to the power of n straight e to the power of 2 x end exponent plus n cross times 2 x cross times 2 to the power of n minus 1 end exponent straight e to the power of 2 x end exponent plus 1 half n open parentheses n minus 1 close parentheses cross times 2 cross times 2 to the power of n minus 2 end exponent straight e to the power of 2 x end exponent plus 0 plus 0 plus 0 plus...

Simplify each term

fraction numerator straight d to the power of n y over denominator straight d x to the power of n end fraction equals 2 to the power of n straight e to the power of 2 x end exponent x squared plus 2 to the power of n straight e to the power of 2 x end exponent n x plus 2 to the power of n minus 2 end exponent straight e to the power of 2 x end exponent open parentheses n squared minus n close parentheses

By comparing to the answer given, factorise out a 2 to the power of n minus 2 end exponent and an straight e to the power of 2 x end exponent

fraction numerator straight d to the power of n y over denominator straight d x to the power of n end fraction equals 2 to the power of n minus 2 end exponent straight e to the power of 2 x end exponent open parentheses 2 squared x squared plus 2 squared n x plus n squared minus n close parentheses

This simplifies to the correct answer

fraction numerator straight d to the power of n y over denominator straight d x to the power of n end fraction equals 2 to the power of n minus 2 end exponent straight e to the power of 2 x end exponent open parentheses 4 x squared plus 4 n x plus n squared minus n close parentheses space space for space n element of straight integer numbers

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Mark Curtis

Author: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.