L'Hospital's Rule (Edexcel A Level Further Maths): Revision Note

Exam code: 9FM0

Mark Curtis

Last updated

L'Hospital's rule

What is L'Hospital's rule?

  • L'Hospital's rule says that limit as x rightwards arrow a of open parentheses fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction close parentheses , i.e. the limit of the expression fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction as x tends towards a,

    • where either

      • straight f open parentheses a close parentheses equals 0 and straight g open parentheses a close parentheses equals 0

      • or straight f open parentheses a close parentheses equals plus-or-minus infinity and straight g open parentheses a close parentheses equals plus-or-minus infinity

    • is equal to the limit of the derivatives of the numerator and denominator

      • limit as x rightwards arrow a of open parentheses fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction close parentheses equals limit as x rightwards arrow a of open parentheses fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction close parentheses

    • assuming the limit exists

Examiner Tips and Tricks

You must learn L'Hospital's rule, as it is not given in the formulae booklet!

What is the indeterminate form of a limit?

  • The indeterminate form of a limit is a representation of the nature / type of limit

    • although it does not help you actually calculate the limit

      • e.g. 0 over 0, infinity over infinity, 0 cross times infinity, infinity minus infinity, 1 to the power of infinity, 0 to the power of 0, infinity to the power of 0

  • L'Hospital's rule is a method to calculate limits for two of the indeterminate cases above:

    • The zero over zero case, 0 over 0

      • from fraction numerator straight f open parentheses a close parentheses over denominator straight g open parentheses a close parentheses end fraction when straight f open parentheses a close parentheses equals 0 and straight g open parentheses a close parentheses equals 0

    • The infinity over infinity case, plus-or-minus infinity over infinity

      • from fraction numerator straight f open parentheses a close parentheses over denominator straight g open parentheses a close parentheses end fraction when straight f open parentheses a close parentheses equals plus-or-minus infinity and straight g open parentheses a close parentheses equals plus-or-minus infinity

How do I use L'Hospital's rule for the zero over zero case?

  • An example of the zero over zero case, 0 over 0, of L'Hospital's rule is to find limit as x rightwards arrow pi of open parentheses fraction numerator sin x over denominator x minus pi end fraction close parentheses

    • Let straight f open parentheses x close parentheses equals sin x and straight g open parentheses x close parentheses equals x minus pi

    • Check that straight f open parentheses pi close parentheses and straight g open parentheses pi close parentheses are both zero

      • straight f open parentheses pi close parentheses equals sin pi equals 0 and straight g open parentheses pi close parentheses equals pi minus pi equals 0

      • so the indeterminate form of the limit is 0 over 0

    • Use differentiation to find fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction

      • fraction numerator cos x over denominator 1 end fraction

    • Now let x rightwards arrow pi

      • fraction numerator cos pi over denominator 1 end fraction equals fraction numerator negative 1 over denominator 1 end fraction equals negative 1

    • L'Hospital's rule states that this is the limit of the original expression

      • limit as x rightwards arrow pi of open parentheses fraction numerator sin x over denominator x minus pi end fraction close parentheses equals negative 1

Examiner Tips and Tricks

Limits with trigonometric functions are always assumed to be in radians unless otherwise specified.

  • Remember that calculus with trigonometric functions is only valid for radians

Worked Example

Use L'Hospital's rule to determine

limit as x rightwards arrow 0 of open parentheses fraction numerator 2 x over denominator negative 1 plus straight e to the power of x end fraction close parentheses

Answer:

Let straight f open parentheses x close parentheses equals 2 x and straight g open parentheses x close parentheses equals negative 1 plus straight e to the power of x

Check if L'Hospital's rule can be used

  • Calculate straight f open parentheses 0 close parentheses and straight g open parentheses 0 close parentheses and check if fraction numerator straight f open parentheses 0 close parentheses over denominator straight g open parentheses 0 close parentheses end fraction is 0 over 0 or plus-or-minus infinity over infinity

table row cell straight f open parentheses 0 close parentheses end cell equals cell 2 cross times 0 equals 0 end cell row blank blank blank row cell straight g open parentheses 0 close parentheses end cell equals cell negative 1 plus straight e to the power of 0 equals negative 1 plus 1 equals 0 end cell end table

limit as x rightwards arrow 0 of open parentheses fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction close parentheses is 0 over 0, so L'Hospital's rule can be used

Find fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction by differentiating the top and bottom separately

fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction equals 2 over straight e to the power of x

Find limit as x rightwards arrow 0 of open parentheses fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction close parentheses by letting x tend toward 0

table row cell limit as x rightwards arrow 0 of open parentheses 2 over straight e to the power of x close parentheses end cell equals cell 2 over straight e to the power of 0 end cell row blank equals cell 2 over 1 end cell row blank equals 2 end table

This is equal to the limit of fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction by L'Hospital's rule

limit as x rightwards arrow 0 of open parentheses fraction numerator 2 x over denominator negative 1 plus straight e to the power of x end fraction close parentheses equals 2

How do I use L'Hospital's rule for the infinity over infinity case?

  • An example of the infinity over infinity case, plus-or-minus infinity over infinity, of L'Hospital's rule is to find limit as x rightwards arrow 1 to the power of plus of open parentheses fraction numerator ln open parentheses x minus 1 close parentheses over denominator open parentheses fraction numerator 1 over denominator x minus 1 end fraction close parentheses end fraction close parentheses

    • x rightwards arrow 1 to the power of plus means x rightwards arrow 1 from values above 1

      • e.g. 1.1, 1.01, 1.001, etc

      • but not 0.9, 0.99, 0.999...

      • as the graph of y equals ln open parentheses x minus 1 close parentheses doesn't exist for x less than 1

    • Let straight f open parentheses x close parentheses equals ln open parentheses x minus 1 close parentheses and straight g open parentheses x close parentheses equals fraction numerator 1 over denominator x minus 1 end fraction

    • Check that straight f open parentheses 1 close parentheses and straight g open parentheses 1 close parentheses are both infinite

      • straight f open parentheses 1 close parentheses equals ln 0 space equals negative infinity and straight g open parentheses 1 close parentheses equals 1 over 0 equals infinity

      • so the indeterminate form of the limit is fraction numerator negative infinity over denominator infinity end fraction

    • Use differentiation to find fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction

      • fraction numerator fraction numerator 1 over denominator x minus 1 end fraction over denominator negative 1 over open parentheses x minus 1 close parentheses squared end fraction

    • Simplify before applying the limit

      • fraction numerator 1 over denominator x minus 1 end fraction divided by fraction numerator negative 1 over denominator open parentheses x minus 1 close parentheses squared end fraction equals fraction numerator 1 over denominator up diagonal strike open parentheses x minus 1 close parentheses end strike end fraction cross times fraction numerator up diagonal strike open parentheses x minus 1 close parentheses end strike open parentheses x minus 1 close parentheses over denominator negative 1 end fraction equals negative open parentheses x minus 1 close parentheses

    • Now let x rightwards arrow 1 to the power of plus

      • negative open parentheses 1 minus 1 close parentheses equals 0

    • L'Hospital's rule states that this is the limit of the original expression

      • limit as x rightwards arrow 1 to the power of plus of open parentheses fraction numerator ln open parentheses x minus 1 close parentheses over denominator open parentheses fraction numerator 1 over denominator x minus 1 end fraction close parentheses end fraction close parentheses equals 0

Can I use L'Hospital's rule more than once?

  • L'Hospital's rule can be used repeatedly, so long as the conditions are met each time

  • For example, to find limit as x rightwards arrow 0 of open parentheses fraction numerator x minus sin x over denominator x squared end fraction close parentheses

    • Let straight f open parentheses x close parentheses equals x minus sin x and straight g open parentheses x close parentheses equals x squared

    • Find straight f open parentheses 0 close parentheses and straight g open parentheses 0 close parentheses

      • straight f open parentheses 0 close parentheses equals 0 minus sin 0 equals 0 and straight g open parentheses 0 close parentheses equals 0 squared equals 0

      • so the indeterminate form of limit as x rightwards arrow 0 of open parentheses fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction close parentheses is 0 over 0

    • Use differentiation to find fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction

      • fraction numerator 1 minus cos x over denominator 2 x end fraction

    • But straight f apostrophe open parentheses 0 close parentheses equals 1 minus cos 0 equals 0 and straight g apostrophe open parentheses 0 close parentheses equals 2 cross times 0 equals 0

      • so the indeterminate form of limit as x rightwards arrow 0 of open parentheses fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction close parentheses is 0 over 0

    • So differentiate again to find fraction numerator straight f apostrophe apostrophe open parentheses x close parentheses over denominator straight g apostrophe apostrophe open parentheses x close parentheses end fraction

      • fraction numerator sin x over denominator 1 end fraction

    • straight f apostrophe apostrophe open parentheses 0 close parentheses equals sin 0 equals 0 and straight g apostrophe apostrophe open parentheses 0 close parentheses equals 1

      • this is not 0 over 0

      • so limit as x rightwards arrow 0 of open parentheses fraction numerator straight f apostrophe apostrophe open parentheses x close parentheses over denominator straight g apostrophe apostrophe open parentheses x close parentheses end fraction close parentheses is 0 over 1 equals 0

    • By repeated use of L'Hospital's rule, this is the limit of the original expression

      • limit as x rightwards arrow 0 of open parentheses fraction numerator x minus sin x over denominator x squared end fraction close parentheses equals 0

Examiner Tips and Tricks

Students often incorrectly use the quotient rule to differentiate fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction instead of just differentiating the top and bottom separately, fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction.

How do I rearrange expressions for L'Hospital's rule?

  • If limit as x rightwards arrow a of open parentheses fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction close parentheses is not of the indeterminate form 0 over 0 or plus-or-minus infinity over infinity then L'Hospital's rule cannot be used

    • however it is sometimes possible to rearrange fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction into these correct forms

  • If limit as x rightwards arrow a of open parentheses straight f open parentheses x close parentheses straight g open parentheses x close parentheses close parentheses has the indeterminate form of the product 0 cross times infinity, try writing straight f (or straight g) as the reciprocal of its reciprocal, fraction numerator 1 over denominator 1 divided by straight f end fraction

    • e.g. limit as x rightwards arrow 0 of open parentheses x cot x close parentheses has the indeterminate form 0 cross times infinity

      • limit as x rightwards arrow 0 of open parentheses fraction numerator x over denominator fraction numerator 1 over denominator cot x end fraction end fraction close parentheses equals limit as x rightwards arrow 0 of open parentheses fraction numerator x over denominator tan x end fraction close parentheses
now has the correct L'Hospital form of 0 over 0

    • e.g.limit as x rightwards arrow 0 to the power of plus of open parentheses x ln x close parentheses has the indeterminate form 0 cross times open parentheses negative infinity close parentheses

      • limit as x rightwards arrow 0 to the power of plus of open parentheses fraction numerator ln x over denominator 1 over x end fraction close parentheses
now has the correct L'Hospital form of fraction numerator negative infinity over denominator infinity end fraction

  • If limit as x rightwards arrow a of open parentheses straight f open parentheses x close parentheses minus straight g open parentheses x close parentheses close parentheses has the indeterminate form of the difference infinity minus infinity, try writing algebraic fractions as one single simplified fraction

    • e.g. limit as x rightwards arrow 0 of open parentheses 1 over x minus cot x close parentheses has the indeterminate form infinity minus infinity

      • limit as x rightwards arrow 0 of open parentheses 1 over x minus fraction numerator cos x over denominator sin x end fraction close parentheses equals limit as x rightwards arrow 0 of open parentheses fraction numerator sin x minus x cos x over denominator x sin x end fraction close parentheses now has the correct L'Hospital form of 0 over 0

Worked Example

Use L'Hospital's rule to determine

limit as x rightwards arrow pi over 2 of open parentheses fraction numerator open parentheses x minus pi over 2 close parentheses squared sec x over denominator cos x end fraction close parentheses

Answer:

Check if L'Hospital's rule can be used for fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction

  • Calculate straight f open parentheses pi over 2 close parentheses and straight g open parentheses pi over 2 close parentheses and check if fraction numerator straight f open parentheses pi over 2 close parentheses over denominator straight g open parentheses pi over 2 close parentheses end fraction is 0 over 0 or plus-or-minus infinity over infinity

table row cell straight f open parentheses pi over 2 close parentheses end cell equals cell open parentheses pi over 2 minus pi over 2 close parentheses squared sec pi over 2 equals 0 squared cross times fraction numerator 1 over denominator cos pi over 2 end fraction equals 0 cross times 1 over 0 equals 0 cross times infinity end cell row blank blank blank row cell straight g open parentheses pi over 2 close parentheses end cell equals cell cos pi over 2 equals 0 end cell end table

limit as x rightwards arrow pi over 2 of open parentheses fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction close parentheses is fraction numerator 0 cross times infinity over denominator 0 end fraction, so L'Hospital's rule cannot be used

Rearrange fraction numerator 0 cross times infinity over denominator 0 end fraction to 0 over 0 by writing fraction numerator open parentheses x minus pi over 2 close parentheses squared sec x over denominator cos x end fraction as fraction numerator open parentheses x minus pi over 2 close parentheses squared over denominator cos squared x end fraction

limit as x rightwards arrow pi over 2 of open parentheses fraction numerator open parentheses x minus pi over 2 close parentheses squared over denominator cos squared x end fraction close parentheses

Check if L'Hospital's rule can now be used for the new fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction

table row cell straight f open parentheses pi over 2 close parentheses end cell equals cell open parentheses pi over 2 minus pi over 2 close parentheses squared equals 0 squared equals 0 end cell row blank blank blank row cell straight g open parentheses pi over 2 close parentheses end cell equals cell cos squared pi over 2 equals 0 squared equals 0 end cell end table

limit as x rightwards arrow pi over 2 of open parentheses fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction close parentheses is 0 over 0, so L'Hospital's rule can be used

Find fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction by differentiating the top and bottom separately

table row cell fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction end cell equals cell fraction numerator 2 open parentheses x minus pi over 2 close parentheses to the power of 1 over denominator 2 open parentheses cos x close parentheses to the power of 1 open parentheses negative sin x close parentheses end fraction end cell row blank equals cell fraction numerator 2 open parentheses x minus pi over 2 close parentheses over denominator negative 2 cos x sin x end fraction end cell row blank equals cell fraction numerator x minus pi over 2 over denominator negative cos x sin x end fraction end cell end table

Find limit as x rightwards arrow pi over 2 of open parentheses fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction close parentheses by letting x tend toward pi over 2

table row cell limit as x rightwards arrow pi over 2 of open parentheses fraction numerator x minus pi over 2 over denominator negative cos x sin x end fraction close parentheses end cell equals cell fraction numerator pi over 2 minus pi over 2 over denominator negative cos pi over 2 sin pi over 2 end fraction end cell row blank equals cell fraction numerator 0 over denominator negative 0 cross times 1 end fraction end cell row blank equals cell 0 over 0 end cell end table

This is 0 over 0 so requires a second use of L'Hospital's rule

Find fraction numerator straight f apostrophe apostrophe open parentheses x close parentheses over denominator straight g apostrophe apostrophe open parentheses x close parentheses end fraction by differentiating again the top and bottom separately

table row cell fraction numerator straight f apostrophe apostrophe open parentheses x close parentheses over denominator straight g apostrophe apostrophe open parentheses x close parentheses end fraction end cell equals cell fraction numerator 1 over denominator open parentheses sin x close parentheses sin x minus cos x open parentheses cos x close parentheses end fraction end cell row blank equals cell fraction numerator 1 over denominator sin squared x minus cos squared x end fraction end cell end table

Find limit as x rightwards arrow pi over 2 of open parentheses fraction numerator straight f apostrophe apostrophe open parentheses x close parentheses over denominator straight g apostrophe apostrophe open parentheses x close parentheses end fraction close parentheses by letting x tend toward pi over 2

table row cell limit as x rightwards arrow pi over 2 of open parentheses fraction numerator 1 over denominator sin squared x minus cos squared x end fraction close parentheses end cell equals cell fraction numerator 1 over denominator 1 squared minus 0 squared end fraction end cell row blank equals cell 1 over 1 end cell row blank equals 1 end table

This is equal to the limit of fraction numerator open parentheses x minus pi over 2 close parentheses squared over denominator cos squared x end fraction by L'Hospital's rule twice

  • and fraction numerator open parentheses x minus pi over 2 close parentheses squared over denominator cos squared x end fraction is a rearrangement of fraction numerator open parentheses x minus pi over 2 close parentheses squared sec x over denominator cos x end fraction

limit as x rightwards arrow pi over 2 of open parentheses fraction numerator open parentheses x minus pi over 2 close parentheses squared sec x over denominator cos x end fraction close parentheses equals 1

How do I take logarithms for L'Hospital's rule?

  • If limit as x rightwards arrow a of open parentheses straight f open parentheses x close parentheses to the power of straight g open parentheses x close parentheses end exponent close parentheses has the indeterminate form of the power 1 to the power of infinity, or 0 to the power of 0, or infinity to the power of 0, etc, try

    • taking the logarithm of the function inside the limit, straight f open parentheses x close parentheses to the power of straight g open parentheses x close parentheses end exponent

      • using log laws to write it in the form 0 over 0 or plus-or-minus infinity over infinity

    • using L'Hospital's rule to find the limit

    • then writing the answer to the original limit as straight e to the power of limit

  • e.g. limit as x rightwards arrow 0 of open parentheses open parentheses 1 plus sin x close parentheses to the power of 1 over x end exponent close parentheses has the indeterminate form 1 to the power of infinity

    • So take logs of the function

      • limit as x rightwards arrow 0 of open parentheses ln open parentheses open parentheses 1 plus sin x close parentheses to the power of 1 over x end exponent close parentheses close parentheses

    • Use log laws to simplify

      • limit as x rightwards arrow 0 of open parentheses 1 over x ln open parentheses 1 plus sin x close parentheses close parentheses equals limit as x rightwards arrow 0 of open parentheses fraction numerator ln open parentheses 1 plus sin x close parentheses over denominator x end fraction close parentheses

      • This now has the correct L'Hospital form of 0 over 0

    • Use L'Hospital's rule to find the limit

      • limit as x rightwards arrow 0 of open parentheses fraction numerator ln open parentheses 1 plus sin x close parentheses over denominator x end fraction close parentheses equals limit as x rightwards arrow 0 of open parentheses fraction numerator fraction numerator cos x over denominator 1 plus sin x end fraction over denominator 1 end fraction close parentheses equals fraction numerator fraction numerator 1 over denominator 1 plus 0 end fraction over denominator 1 end fraction equals 1

    • The final answer is straight e to the power of limit

      • limit as x rightwards arrow 0 of open parentheses open parentheses 1 plus sin x close parentheses to the power of 1 over x end exponent close parentheses equals straight e to the power of 1 equals straight e

Worked Example

Use L'Hospital's rule to determine

limit as x rightwards arrow infinity of open parentheses open parentheses 1 plus a over x close parentheses to the power of x close parentheses

Answer:

Find the indeterminate form of the limit given

limit as x rightwards arrow infinity of open parentheses open parentheses 1 plus a over x close parentheses to the power of x close parentheses equals open parentheses 1 plus 0 close parentheses to the power of infinity equals 1 to the power of infinity

This is not in the form 0 over 0 or plus-or-minus infinity over infinity for L'Hospital's rule

Take logs of the function inside the limit

ln open parentheses 1 plus a over x close parentheses to the power of x

Use log laws to simplify

x ln open parentheses 1 plus a over x close parentheses

Check the indeterminate form of this limit

limit as x rightwards arrow infinity of open parentheses x ln open parentheses 1 plus a over x close parentheses close parentheses equals infinity cross times ln 1 equals infinity cross times 0

This is still not in the form 0 over 0 or plus-or-minus infinity over infinity for L'Hospital's rule

Try writing x as fraction numerator 1 over denominator open parentheses 1 over x close parentheses end fraction

limit as x rightwards arrow infinity of open parentheses fraction numerator ln open parentheses 1 plus a over x close parentheses over denominator 1 over x end fraction close parentheses equals fraction numerator ln 1 over denominator 0 end fraction equals 0 over 0

This is now in the correct form 0 over 0 for L'Hospital's rule

Find fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction by differentiating the top and bottom separately, then simplify

table row cell fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction end cell equals cell fraction numerator open parentheses fraction numerator negative a over x squared over denominator 1 plus a over x end fraction close parentheses over denominator negative 1 over x squared end fraction end cell row blank equals cell fraction numerator negative a over x squared over denominator 1 plus a over x end fraction divided by fraction numerator negative 1 over denominator x squared end fraction end cell row blank equals cell fraction numerator negative a over x squared over denominator 1 plus a over x end fraction cross times fraction numerator x squared over denominator negative 1 end fraction end cell row blank equals cell fraction numerator negative a over denominator negative 1 minus a over x end fraction end cell row blank equals cell fraction numerator a over denominator 1 plus a over x end fraction end cell end table

Find limit as x rightwards arrow infinity of open parentheses fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction close parentheses by letting x tend toward infinity

table row cell limit as x rightwards arrow infinity of open parentheses fraction numerator straight f apostrophe open parentheses x close parentheses over denominator straight g apostrophe open parentheses x close parentheses end fraction close parentheses end cell equals cell fraction numerator a over denominator 1 plus 0 end fraction end cell row blank equals a end table

This is equal to the limit of fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction by L'Hospital's rule

limit as x rightwards arrow infinity of open parentheses fraction numerator ln open parentheses 1 plus a over x close parentheses over denominator 1 over x end fraction close parentheses equals a

This means the limit of the original function, before taking logarithms, is straight e to the power of a

limit as x rightwards arrow infinity of open parentheses open parentheses 1 plus a over x close parentheses to the power of x close parentheses equals straight e to the power of a

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Mark Curtis

Author: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.