The Weierstrass Substitution (Edexcel A Level Further Maths): Revision Note

Exam code: 9FM0

Mark Curtis

Last updated

The Weierstrass substitution

What is the Weierstrass substitution?

  • The Weierstrass substitution refers to using the tangent half-angle substitution t equals tan open parentheses theta over 2 close parentheses when performing integration by substitution

    • i.e. integration using the t-substitution

  • It is helpful to know the t-formulae, namely

    • sin theta equals fraction numerator 2 t over denominator 1 plus t squared end fraction

    • cos theta equals fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction

    • tan theta equals fraction numerator 2 t over denominator 1 minus t squared end fraction

    • and hence

      • cosec theta equals fraction numerator 1 plus t squared over denominator 2 t end fraction

      • sec theta equals fraction numerator 1 plus t squared over denominator 1 minus t squared end fraction

      • cot theta equals fraction numerator 1 minus t squared over denominator 2 t end fraction

Examiner Tips and Tricks

Exam questions don't say to "use a Weierstrass substitution" but they do give the t-substitution in the question.

How do I use the Weierstrass substitution for indefinite integration?

  • To use the Weierstrass substitution t equals tan open parentheses theta over 2 close parentheses for indefinite integrals:

  • STEP 1
    Rewrite the theta expression in terms of t

  • STEP 2
    Convert d theta into straight d t

    • Differentiate the substitution t equals tan open parentheses theta over 2 close parentheses

      • fraction numerator straight d t over denominator straight d theta end fraction equals 1 half sec squared open parentheses theta over 2 close parentheses

    • Use the reciprocal trig identity 1 plus tan squared A identical to sec squared A

      • so fraction numerator straight d t over denominator straight d theta end fraction equals 1 half open parentheses 1 plus tan squared open parentheses theta over 2 close parentheses close parentheses equals 1 half open parentheses 1 plus t squared close parentheses

    • Find d theta in terms of straight d t

      • fraction numerator straight d theta over denominator straight d t end fraction equals fraction numerator 2 over denominator 1 plus t squared end fraction

      • so straight d theta equals fraction numerator 2 over denominator 1 plus t squared end fraction straight d t

  • STEP 3
    Integrate and add a constant of integration

    • using any of the known methods in the course

    • e.g.

      • integral fraction numerator straight f apostrophe open parentheses t close parentheses over denominator straight f open parentheses t close parentheses end fraction straight d t italic equals ln vertical line straight f open parentheses t close parentheses vertical line plus c

      • Integration by partial fractions

      • Integration by trigonometric or hyperbolic substitutions

  • STEP 4

    Rewrite the t expression back in terms of theta

Worked Example

Use the substitution t equals tan open parentheses theta over 2 close parentheses to show that

integral sec theta space straight d theta equals ln open vertical bar table row blank blank cell fraction numerator 1 plus tan open parentheses theta over 2 close parentheses over denominator 1 minus tan open parentheses theta over 2 close parentheses end fraction end cell end table close vertical bar plus c

Answer:

Write sec theta in terms of the cosine t-formula, cos theta equals fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction

table row cell sec theta end cell equals cell fraction numerator 1 over denominator cos theta end fraction end cell row cell sec theta end cell equals cell fraction numerator 1 plus t squared over denominator 1 minus t squared end fraction end cell end table

Change d theta into straight d t by differentiating t equals tan open parentheses theta over 2 close parentheses

fraction numerator straight d t over denominator straight d theta end fraction equals 1 half sec squared open parentheses theta over 2 close parentheses

Use 1 plus tan squared A identical to sec squared A to write it in terms of t

table row cell fraction numerator straight d t over denominator straight d theta end fraction end cell equals cell 1 half open parentheses 1 plus tan squared open parentheses theta over 2 close parentheses close parentheses end cell row cell fraction numerator straight d t over denominator straight d theta end fraction end cell equals cell 1 half open parentheses 1 plus t squared close parentheses end cell end table

Find d theta in terms of straight d t

table row cell fraction numerator straight d theta over denominator straight d t end fraction end cell equals cell fraction numerator 2 over denominator 1 plus t squared end fraction end cell row cell straight d theta end cell equals cell fraction numerator 2 over denominator 1 plus t squared end fraction straight d t end cell end table

Substitute sec theta and d theta into the integral

table row cell integral sec theta space straight d theta end cell equals cell integral fraction numerator up diagonal strike 1 plus t squared end strike over denominator 1 minus t squared end fraction cross times fraction numerator 2 over denominator up diagonal strike 1 plus t squared end strike end fraction space straight d t end cell row blank equals cell integral fraction numerator 2 over denominator 1 minus t squared end fraction space straight d t end cell end table

Write fraction numerator 2 over denominator 1 minus t squared end fraction in partial fractions

table row cell fraction numerator 2 over denominator 1 minus t squared end fraction end cell equals cell fraction numerator A over denominator 1 plus t end fraction plus fraction numerator B over denominator 1 minus t end fraction end cell row 2 equals cell A open parentheses 1 minus t close parentheses plus B open parentheses 1 plus t close parentheses end cell end table

Find A and B

table row t equals cell 1 space space rightwards double arrow space 2 equals 2 B space space rightwards double arrow space B equals 1 end cell row t equals cell negative 1 space rightwards double arrow space 2 equals 2 A space space rightwards double arrow space A equals 1 end cell end table

Substitute the partial fractions into the integral

table row cell integral sec theta space straight d theta end cell equals cell integral fraction numerator 2 over denominator 1 minus t squared end fraction space straight d t end cell row blank equals cell integral open parentheses fraction numerator 1 over denominator 1 plus t end fraction plus fraction numerator 1 over denominator 1 minus t end fraction close parentheses space straight d t end cell end table

Integrate each partial fraction

table row cell integral sec theta space straight d theta end cell equals cell ln vertical line 1 plus t vertical line minus ln vertical line 1 minus t vertical line plus c end cell end table

Use log laws to combine the two log terms

table row cell integral sec theta space straight d theta end cell equals cell ln open vertical bar fraction numerator 1 plus t over denominator 1 minus t end fraction close vertical bar plus c end cell end table

Write the answer back in terms of theta using t equals tan open parentheses theta over 2 close parentheses

table row cell integral sec theta space straight d theta end cell equals cell ln open vertical bar fraction numerator 1 plus tan open parentheses theta over 2 close parentheses over denominator 1 minus tan open parentheses theta over 2 close parentheses end fraction close vertical bar plus c end cell end table

How do I use the Weierstrass substitution for definite integration?

  • To use the Weierstrass substitution t equals tan open parentheses theta over 2 close parentheses for definite integrals:

  • STEP 1
    Rewrite the theta expression in terms of t

  • STEP 2
    Convert d theta into straight d t

    • Differentiate the substitution t equals tan open parentheses theta over 2 close parentheses

      • fraction numerator straight d t over denominator straight d theta end fraction equals 1 half sec squared open parentheses theta over 2 close parentheses

    • Use the reciprocal trig identity 1 plus tan squared A identical to sec squared A

      • so fraction numerator straight d t over denominator straight d theta end fraction equals 1 half open parentheses 1 plus tan squared open parentheses theta over 2 close parentheses close parentheses equals 1 half open parentheses 1 plus t squared close parentheses

    • Find d theta in terms of straight d t

      • fraction numerator straight d theta over denominator straight d t end fraction equals fraction numerator 2 over denominator 1 plus t squared end fraction

      • so straight d theta equals fraction numerator 2 over denominator 1 plus t squared end fraction straight d t

  • STEP 3
    Change the limits

  • STEP 4
    Integrate

    • using any of the known methods in the course

    • e.g.

      • Error converting from MathML to accessible text.

      • Integration by partial fractions

      • Integration by trigonometric or hyperbolic substitutions

  • STEP 5

    Substitute in the new limits

Worked Example

Use the substitution t equals tan open parentheses theta over 2 close parentheses to determine the exact value of

integral subscript pi over 3 end subscript superscript pi over 2 end superscript fraction numerator 1 over denominator 2 plus 2 cos theta plus sin theta end fraction d theta

giving your answer in the form ln open parentheses p plus q square root of 3 close parentheses, where p and q are constants to be found.

Answer:

Use the t-formulae cos theta equals fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction and sin theta equals fraction numerator 2 t over denominator 1 plus t squared end fraction to rewrite the expression inside the integral

table row cell fraction numerator 1 over denominator 2 plus 2 cos theta plus sin theta end fraction end cell equals cell fraction numerator 1 over denominator 2 plus fraction numerator 2 open parentheses 1 minus t squared close parentheses over denominator 1 plus t squared end fraction plus fraction numerator 2 t over denominator 1 plus t squared end fraction end fraction end cell row blank blank blank end table

Multiply top and bottom by open parentheses 1 plus t squared close parentheses to simplify the result

table row cell fraction numerator 1 over denominator 2 plus 2 cos theta plus sin theta end fraction end cell equals cell fraction numerator 1 over denominator 2 plus fraction numerator 2 open parentheses 1 minus t squared close parentheses over denominator 1 plus t squared end fraction plus fraction numerator 2 t over denominator 1 plus t squared end fraction end fraction cross times fraction numerator 1 plus t squared over denominator 1 plus t squared end fraction end cell row blank equals cell fraction numerator 1 plus t squared over denominator 2 open parentheses 1 plus t squared close parentheses plus 2 open parentheses 1 minus t squared close parentheses plus 2 t end fraction end cell row blank equals cell fraction numerator 1 plus t squared over denominator 2 plus 2 t squared plus 2 minus 2 t squared plus 2 t end fraction end cell row blank equals cell fraction numerator 1 plus t squared over denominator 2 open parentheses t plus 2 close parentheses end fraction end cell end table

Change d theta into straight d t by differentiating t equals tan open parentheses theta over 2 close parentheses

fraction numerator straight d t over denominator straight d theta end fraction equals 1 half sec squared open parentheses theta over 2 close parentheses

Use 1 plus tan squared A identical to sec squared A to write it in terms of t

table row cell fraction numerator straight d t over denominator straight d theta end fraction end cell equals cell 1 half open parentheses 1 plus tan squared open parentheses theta over 2 close parentheses close parentheses end cell row cell fraction numerator straight d t over denominator straight d theta end fraction end cell equals cell 1 half open parentheses 1 plus t squared close parentheses end cell end table

Find d theta in terms of straight d t

table row cell fraction numerator straight d theta over denominator straight d t end fraction end cell equals cell fraction numerator 2 over denominator 1 plus t squared end fraction end cell row cell straight d theta end cell equals cell fraction numerator 2 over denominator 1 plus t squared end fraction straight d t end cell end table

Change the limits

theta equals pi over 3 space rightwards double arrow space t equals tan open parentheses fraction numerator pi over 3 over denominator 2 end fraction close parentheses equals tan open parentheses pi over 6 close parentheses equals fraction numerator square root of 3 over denominator 3 end fraction
theta equals pi over 2 space rightwards double arrow space t equals tan open parentheses fraction numerator pi over 2 over denominator 2 end fraction close parentheses equals tan open parentheses pi over 4 close parentheses equals 1

Substitute the expression, d theta and new limits into the integral and simplify

table row cell integral subscript pi over 3 end subscript superscript pi over 2 end superscript fraction numerator 1 over denominator 2 plus 2 cos theta plus sin theta end fraction d theta end cell equals cell integral subscript fraction numerator square root of 3 over denominator 3 end fraction end subscript superscript 1 fraction numerator up diagonal strike 1 plus t squared end strike over denominator down diagonal strike 2 open parentheses t plus 2 close parentheses end fraction cross times fraction numerator down diagonal strike 2 over denominator up diagonal strike 1 plus t squared end strike end fraction straight d t end cell row blank equals cell integral subscript fraction numerator square root of 3 over denominator 3 end fraction end subscript superscript 1 fraction numerator 1 over denominator t plus 2 end fraction straight d t end cell end table

Integrate and substitute in the limits

table row cell integral subscript fraction numerator square root of 3 over denominator 3 end fraction end subscript superscript 1 fraction numerator 1 over denominator t plus 2 end fraction straight d t end cell equals cell open square brackets ln vertical line t plus 2 vertical line close square brackets subscript fraction numerator square root of 3 over denominator 3 end fraction end subscript superscript 1 end cell row blank equals cell ln 3 minus ln open parentheses fraction numerator square root of 3 over denominator 3 end fraction plus 2 close parentheses end cell end table

Use log laws and rationalising the denominator (or your calculator) to write out the final answer in the form ln open parentheses p plus q square root of 3 close parentheses

table row cell integral subscript fraction numerator square root of 3 over denominator 3 end fraction end subscript superscript 1 fraction numerator 1 over denominator t plus 2 end fraction straight d t end cell equals cell ln open parentheses fraction numerator 3 over denominator fraction numerator square root of 3 over denominator 3 end fraction plus 2 end fraction close parentheses end cell row blank equals cell ln open parentheses fraction numerator 9 over denominator square root of 3 plus 6 end fraction close parentheses end cell row blank equals cell ln open parentheses fraction numerator 9 over denominator square root of 3 plus 6 end fraction cross times fraction numerator square root of 3 minus 6 over denominator square root of 3 minus 6 end fraction close parentheses end cell row blank equals cell ln open parentheses fraction numerator 9 square root of 3 minus 54 over denominator negative 33 end fraction close parentheses end cell row blank equals cell ln open parentheses fraction numerator 18 minus 3 square root of 3 over denominator 11 end fraction close parentheses end cell end table

Write as ln open parentheses p plus q square root of 3 close parentheses

integral subscript pi over 3 end subscript superscript pi over 2 end superscript fraction numerator 1 over denominator 2 plus 2 cos theta plus sin theta end fraction d theta equals ln open parentheses 18 over 11 minus 3 over 11 square root of 3 close parentheses

How do I use the Weierstrass substitution for improper integrals?

  • The Weierstrass substitution t equals tan open parentheses theta over 2 close parentheses is undefined at

    • theta equals open parentheses 2 k plus 1 close parentheses pi

      • where k element of straight integer numbers

    • i.e. odd multiples of pi

  • Any definite integrals that contain an odd multiple of pi between the lower and upper limit are improper integrals

    • They must be split into two separate integrals

    • e.g. by inserting the integration limits:

      • a rightwards arrow pi to the power of minus from below pi

      • b rightwards arrow pi to the power of plus from above pi

    • which, from the tan graph, gives the t-limits:

      • t equals tan open parentheses pi to the power of minus over 2 close parentheses equals infinity

      • t equals tan open parentheses pi to the power of plus over 2 close parentheses equals negative infinity

    • See the worked example below

Worked Example

Use the substitution t equals tan open parentheses theta over 2 close parentheses to determine the exact value of

integral subscript 0 superscript fraction numerator 3 pi over denominator 2 end fraction end superscript fraction numerator 1 over denominator 2 plus cos theta end fraction d theta

Answer:

The substitution t equals tan open parentheses theta over 2 close parentheses is undefined at theta equals pi which lies between the two limits

0 less than pi italic less than fraction numerator 3 pi over denominator 2 end fraction

Split the integral into two separate integrals, either side of theta equals pi

integral subscript 0 superscript fraction numerator 3 pi over denominator 2 end fraction end superscript fraction numerator 1 over denominator 2 plus cos theta end fraction d theta equals limit as a rightwards arrow pi to the power of minus of integral subscript 0 superscript a fraction numerator 1 over denominator 2 plus cos theta end fraction d theta plus limit as b rightwards arrow pi to the power of plus of integral subscript b superscript fraction numerator 3 pi over denominator 2 end fraction end superscript fraction numerator 1 over denominator 2 plus cos theta end fraction d theta

Use the t-formula cos theta equals fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction to rewrite the expression inside the integral

table row cell fraction numerator 1 over denominator 2 plus cos theta end fraction end cell equals cell fraction numerator 1 over denominator 2 plus fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction end fraction end cell end table

Multiply top and bottom by open parentheses 1 plus t squared close parentheses to simplify the result

table row cell fraction numerator 1 over denominator 2 plus cos theta end fraction end cell equals cell fraction numerator 1 over denominator 2 plus fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction end fraction cross times fraction numerator 1 plus t squared over denominator 1 plus t squared end fraction end cell row blank equals cell fraction numerator 1 plus t squared over denominator 2 open parentheses 1 plus t squared close parentheses plus open parentheses 1 minus t squared close parentheses end fraction end cell row blank equals cell fraction numerator 1 plus t squared over denominator 2 plus 2 t squared plus 1 minus t squared end fraction end cell row blank equals cell fraction numerator 1 plus t squared over denominator t squared plus 3 end fraction end cell end table

Change d theta into straight d t by differentiating t equals tan open parentheses theta over 2 close parentheses

fraction numerator straight d t over denominator straight d theta end fraction equals 1 half sec squared open parentheses theta over 2 close parentheses

Use 1 plus tan squared A identical to sec squared A to write it in terms of t

table row cell fraction numerator straight d t over denominator straight d theta end fraction end cell equals cell 1 half open parentheses 1 plus tan squared open parentheses theta over 2 close parentheses close parentheses end cell row cell fraction numerator straight d t over denominator straight d theta end fraction end cell equals cell 1 half open parentheses 1 plus t squared close parentheses end cell end table

Find d theta in terms of straight d t

table row cell fraction numerator straight d theta over denominator straight d t end fraction end cell equals cell fraction numerator 2 over denominator 1 plus t squared end fraction end cell row cell straight d theta end cell equals cell fraction numerator 2 over denominator 1 plus t squared end fraction straight d t end cell end table

Change the four limits

theta equals 0 space rightwards double arrow space t equals tan open parentheses 0 over 2 close parentheses equals tan open parentheses 0 close parentheses equals 0
theta equals a rightwards arrow pi to the power of minus space rightwards double arrow space limit as a rightwards arrow pi to the power of minus of tan open parentheses a over 2 close parentheses equals infinity
theta equals b rightwards arrow pi to the power of plus space rightwards double arrow space limit as b rightwards arrow pi to the power of plus of tan open parentheses b over 2 close parentheses equals negative infinity
theta equals fraction numerator 3 pi over denominator 2 end fraction space rightwards double arrow space t equals tan open parentheses fraction numerator fraction numerator 3 pi over denominator 2 end fraction over denominator 2 end fraction close parentheses equals tan open parentheses fraction numerator 3 pi over denominator 4 end fraction close parentheses equals negative 1

Substitute the expression, d theta and new limits into the integrals and simplify

table row cell integral subscript 0 superscript fraction numerator 3 pi over denominator 2 end fraction end superscript fraction numerator 1 over denominator 2 plus cos theta end fraction d theta end cell equals cell integral subscript 0 superscript infinity fraction numerator up diagonal strike 1 plus t squared end strike over denominator t squared plus 3 end fraction cross times fraction numerator 2 over denominator up diagonal strike 1 plus t squared end strike end fraction straight d t plus integral subscript negative infinity end subscript superscript negative 1 end superscript fraction numerator up diagonal strike 1 plus t squared end strike over denominator t squared plus 3 end fraction cross times fraction numerator 2 over denominator up diagonal strike 1 plus t squared end strike end fraction straight d t space end cell row blank equals cell 2 integral subscript 0 superscript infinity fraction numerator 1 over denominator t squared plus 3 end fraction straight d t plus 2 integral subscript negative infinity end subscript superscript negative 1 end superscript fraction numerator 1 over denominator t squared plus 3 end fraction straight d t end cell end table

Integrate fraction numerator 1 over denominator t squared plus 3 end fraction, e.g. using that fraction numerator 1 over denominator a squared plus x squared end fraction integrates to 1 over a arctan open parentheses x over a close parentheses (from the formulae booklet)

integral fraction numerator 1 over denominator t squared plus 3 end fraction straight d t equals fraction numerator 1 over denominator square root of 3 end fraction arctan open parentheses fraction numerator t over denominator square root of 3 end fraction close parentheses plus c

Substitute this into the working above

table row cell integral subscript 0 superscript fraction numerator 3 pi over denominator 2 end fraction end superscript fraction numerator 1 over denominator 2 plus cos theta end fraction d theta end cell equals cell fraction numerator 2 over denominator square root of 3 end fraction open square brackets arctan open parentheses fraction numerator t over denominator square root of 3 end fraction close parentheses close square brackets subscript 0 superscript infinity plus fraction numerator 2 over denominator square root of 3 end fraction open square brackets arctan open parentheses fraction numerator t over denominator square root of 3 end fraction close parentheses close square brackets subscript negative infinity end subscript superscript negative 1 end superscript end cell end table

Find the value of the first integral (using the idea that arctan open parentheses infinity close parentheses equals pi over 2)

table row cell fraction numerator 2 over denominator square root of 3 end fraction open square brackets arctan open parentheses fraction numerator t over denominator square root of 3 end fraction close parentheses close square brackets subscript 0 superscript infinity end cell equals cell fraction numerator 2 over denominator square root of 3 end fraction open parentheses limit as t rightwards arrow infinity of arctan open parentheses fraction numerator t over denominator square root of 3 end fraction close parentheses minus arctan open parentheses 0 close parentheses close parentheses end cell row blank equals cell fraction numerator 2 over denominator square root of 3 end fraction open parentheses pi over 2 minus 0 close parentheses end cell row blank equals cell fraction numerator pi square root of 3 over denominator 3 end fraction end cell end table

Find the value of the second integral (using the idea that arctan open parentheses negative infinity close parentheses equals negative pi over 2)

table row cell fraction numerator 2 over denominator square root of 3 end fraction open square brackets arctan open parentheses fraction numerator t over denominator square root of 3 end fraction close parentheses close square brackets subscript negative infinity end subscript superscript negative 1 end superscript end cell equals cell fraction numerator 2 over denominator square root of 3 end fraction open parentheses arctan open parentheses fraction numerator negative 1 over denominator square root of 3 end fraction close parentheses minus limit as t rightwards arrow negative infinity of arctan open parentheses fraction numerator t over denominator square root of 3 end fraction close parentheses close parentheses end cell row blank equals cell fraction numerator 2 over denominator square root of 3 end fraction open parentheses negative pi over 6 minus open parentheses negative pi over 2 close parentheses close parentheses end cell row blank equals cell fraction numerator 2 pi square root of 3 over denominator 9 end fraction end cell end table

Add the answers together to give the final answer

table row cell integral subscript 0 superscript fraction numerator 3 pi over denominator 2 end fraction end superscript fraction numerator 1 over denominator 2 plus cos theta end fraction d theta end cell equals cell fraction numerator pi square root of 3 over denominator 3 end fraction plus fraction numerator 2 pi square root of 3 over denominator 9 end fraction end cell end table

table row cell integral subscript 0 superscript fraction numerator 3 pi over denominator 2 end fraction end superscript fraction numerator 1 over denominator 2 plus cos theta end fraction d theta end cell equals cell fraction numerator 5 pi square root of 3 over denominator 9 end fraction end cell end table

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Mark Curtis

Author: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.