Limits using Series (Edexcel A Level Further Maths): Revision Note

Exam code: 9FM0

Mark Curtis

Last updated

Limits using series

How do I find limits using Taylor series?

  • To find the limit of a function as x tends to a, limit as x rightwards arrow a of straight f open parentheses x close parentheses

    • first write straight f open parentheses x close parentheses as a Taylor series about x equals a

    • then let x rightwards arrow a in each term

      • Each open parentheses x minus a close parentheses to the power of n term becomes zero leaving behind the limit

  • This method works for combinations of functions

    • e.g. limit as x rightwards arrow a of open parentheses fraction numerator straight f open parentheses x close parentheses over denominator straight g open parentheses x close parentheses end fraction close parentheses, limit as x rightwards arrow a of open parentheses straight f open parentheses x close parentheses plus-or-minus straight g open parentheses x close parentheses close parentheses or limit as x rightwards arrow a of open parentheses straight f open parentheses x close parentheses straight g open parentheses x close parentheses close parentheses

      • First write straight f open parentheses x close parentheses and straight g open parentheses x close parentheses as a Taylor series about x equals a

      • Simplify the algebra inside the limit

      • Then let x rightwards arrow a and see what is left behind

Examiner Tips and Tricks

You will be given the Taylor series expansion in the exam question:

straight f open parentheses x close parentheses equals straight f open parentheses a close parentheses plus open parentheses x minus a close parentheses straight f apostrophe open parentheses a close parentheses plus fraction numerator open parentheses x minus a close parentheses squared over denominator 2 factorial end fraction straight f apostrophe apostrophe open parentheses a close parentheses plus... plus fraction numerator open parentheses x minus a close parentheses to the power of r over denominator r factorial end fraction straight f to the power of open parentheses r close parentheses end exponent open parentheses a close parentheses plus...

How do I find limits using Maclaurin series?

  • In the special case when a equals 0

    • the limit is limit as x rightwards arrow 0 of straight f open parentheses x close parentheses

    • you can use Maclaurin series

      • straight f open parentheses x close parentheses equals straight f open parentheses 0 close parentheses plus x straight f apostrophe open parentheses 0 close parentheses plus fraction numerator x squared over denominator 2 factorial end fraction straight f apostrophe apostrophe open parentheses 0 close parentheses plus... plus fraction numerator x to the power of r over denominator r factorial end fraction straight f to the power of open parentheses r close parentheses end exponent open parentheses 0 close parentheses plus...

  • This is particularly useful for functions inside functions

    • e.g. limit as x rightwards arrow 0 of open parentheses fraction numerator sin open parentheses x cubed close parentheses over denominator x cubed end fraction close parentheses

      • use sin open parentheses x close parentheses equals x minus fraction numerator x cubed over denominator 3 factorial end fraction plus fraction numerator x to the power of 5 over denominator 5 factorial end fraction minus... from the formulae booklet

    • substitute in x cubed

      • sin open parentheses x cubed close parentheses equals x cubed minus fraction numerator x to the power of 9 over denominator 3 factorial end fraction plus fraction numerator x to the power of 15 over denominator 5 factorial end fraction minus...

    • cancel and take the limit

      • limit as x rightwards arrow 0 of open parentheses fraction numerator up diagonal strike x cubed end strike open parentheses 1 minus fraction numerator x to the power of 6 over denominator 3 factorial end fraction plus fraction numerator x to the power of 12 over denominator 5 factorial end fraction minus close parentheses over denominator up diagonal strike x cubed end strike end fraction close parentheses equals 1 minus 0 plus 0 minus... equals 1

Examiner Tips and Tricks

You are given the Maclaurin series formula in the formulae booklet, as well as Maclaurin series expansions for straight e to the power of x, ln open parentheses 1 plus x close parentheses, sin x, cos x and arctan x.

Worked Example

By finding the Taylor series expansion about x equals 1 of ln x in ascending powers of open parentheses x minus 1 close parentheses, up to and including the term in open parentheses x minus 1 close parentheses to the power of 4, find

limit as x rightwards arrow 1 of open parentheses fraction numerator ln x minus open parentheses x minus 1 close parentheses plus 1 half open parentheses x minus 1 close parentheses squared over denominator open parentheses x minus 1 close parentheses cubed end fraction close parentheses

Answer:

First find the Taylor series by letting straight f open parentheses x close parentheses equals ln xand finding the first four derivatives

table row cell straight f apostrophe open parentheses x close parentheses end cell equals cell 1 over x end cell row cell straight f apostrophe apostrophe open parentheses x close parentheses end cell equals cell negative 1 over x squared end cell row cell straight f apostrophe apostrophe apostrophe open parentheses x close parentheses end cell equals cell 2 over x cubed end cell row cell straight f to the power of open parentheses 4 close parentheses end exponent open parentheses x close parentheses end cell equals cell negative 6 over x to the power of 4 end cell end table

Substitute x equals 1 into straight f open parentheses x close parentheses and its derivatives

table row cell straight f open parentheses 1 close parentheses end cell equals cell ln 1 equals 0 end cell row cell straight f apostrophe open parentheses 1 close parentheses end cell equals cell 1 over 1 equals 1 end cell row cell straight f apostrophe apostrophe open parentheses 1 close parentheses end cell equals cell negative 1 over 1 squared equals negative 1 end cell row cell straight f apostrophe apostrophe apostrophe open parentheses 1 close parentheses end cell equals cell 2 over 1 cubed equals 2 end cell row cell straight f to the power of open parentheses 4 close parentheses end exponent open parentheses 1 close parentheses end cell equals cell negative 6 over 1 to the power of 4 equals negative 6 end cell end table

Substitute these values into the Taylor series expansion given by

straight f open parentheses x close parentheses equals straight f open parentheses a close parentheses plus open parentheses x minus a close parentheses straight f apostrophe open parentheses a close parentheses plus fraction numerator open parentheses x minus a close parentheses squared over denominator 2 factorial end fraction straight f apostrophe apostrophe open parentheses a close parentheses plus... plus fraction numerator open parentheses x minus a close parentheses to the power of r over denominator r factorial end fraction straight f to the power of open parentheses r close parentheses end exponent open parentheses a close parentheses plus...

table row cell ln x end cell equals cell 0 plus open parentheses x minus 1 close parentheses cross times 1 plus fraction numerator open parentheses x minus 1 close parentheses squared over denominator 2 factorial end fraction cross times open parentheses negative 1 close parentheses plus fraction numerator open parentheses x minus 1 close parentheses cubed over denominator 3 factorial end fraction cross times 2 plus fraction numerator open parentheses x minus 1 close parentheses to the power of 4 over denominator 4 factorial end fraction cross times open parentheses negative 6 close parentheses plus... end cell row blank equals cell open parentheses x minus 1 close parentheses minus 1 half open parentheses x minus 1 close parentheses squared plus 1 third open parentheses x minus 1 close parentheses cubed minus 1 fourth open parentheses x minus 1 close parentheses to the power of 4 plus... end cell end table

Now substitute this Taylor series into the expression in the question, cancelling any terms

fraction numerator ln x minus open parentheses x minus 1 close parentheses plus 1 half open parentheses x minus 1 close parentheses squared over denominator open parentheses x minus 1 close parentheses cubed end fraction equals fraction numerator up diagonal strike open parentheses x minus 1 close parentheses end strike minus down diagonal strike 1 half open parentheses x minus 1 close parentheses squared end strike plus 1 third open parentheses x minus 1 close parentheses cubed minus 1 fourth open parentheses x minus 1 close parentheses to the power of 4 plus... negative up diagonal strike open parentheses x minus 1 close parentheses end strike plus down diagonal strike 1 half open parentheses x minus 1 close parentheses squared end strike over denominator open parentheses x minus 1 close parentheses cubed end fraction

Factorise out open parentheses x minus 1 close parentheses cubed from top and bottom and cancel

table row blank equals cell fraction numerator 1 third open parentheses x minus 1 close parentheses cubed minus 1 fourth open parentheses x minus 1 close parentheses to the power of 4 plus... over denominator open parentheses x minus 1 close parentheses cubed end fraction end cell row blank equals cell fraction numerator up diagonal strike open parentheses x minus 1 close parentheses cubed end strike open parentheses 1 third minus 1 fourth open parentheses x minus 1 close parentheses plus... close parentheses over denominator up diagonal strike open parentheses x minus 1 close parentheses cubed end strike end fraction end cell row blank equals cell 1 third minus 1 fourth open parentheses x minus 1 close parentheses plus... end cell end table

Now take the limit as x rightwards arrow 1 (i.e. all terms involving open parentheses x minus 1 close parentheses to the power of n go to zero)

table row cell limit as x rightwards arrow 1 of open parentheses fraction numerator ln x minus open parentheses x minus 1 close parentheses plus 1 half open parentheses x minus 1 close parentheses squared over denominator open parentheses x minus 1 close parentheses cubed end fraction close parentheses end cell equals cell limit as x rightwards arrow 1 of open parentheses 1 third minus 1 fourth open parentheses x minus 1 close parentheses plus... close parentheses end cell row blank equals cell 1 third plus limit as x rightwards arrow 1 of open parentheses negative 1 fourth open parentheses x minus 1 close parentheses plus.... close parentheses end cell row blank equals cell 1 third plus 0 end cell row blank equals cell 1 third end cell end table

Write out the final result

limit as x rightwards arrow 1 of open parentheses fraction numerator ln x minus open parentheses x minus 1 close parentheses plus 1 half open parentheses x minus 1 close parentheses squared over denominator open parentheses x minus 1 close parentheses cubed end fraction close parentheses equals 1 third

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Mark Curtis

Author: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.