Series Solutions to Differential Equations (Edexcel A Level Further Maths): Revision Note

Exam code: 9FM0

Mark Curtis

Last updated

Series solutions to differential equations

How do I find a series solution to a differential equation?

  • For complicated differential equations that cannot be solved, an approximate solution can be found using Taylor series

    • e.g. solve fraction numerator straight d y over denominator straight d x end fraction equals x ln y plus y squared where y equals b when x equals a

  • The series solution is given by

    • Error converting from MathML to accessible text.

      • where y open parentheses a close parentheses equals b, y apostrophe open parentheses a close parentheses equals open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses subscript x equals a end subscript comma space y apostrophe apostrophe open parentheses a close parentheses equals open parentheses fraction numerator straight d squared y over denominator straight d x squared end fraction close parentheses subscript x equals a end subscript, etc

Examiner Tips and Tricks

You will be given the Taylor series expansion below within the exam question itself. For differential equation solutions it helps to swap the straight f to a y.

straight f open parentheses x close parentheses equals straight f open parentheses a close parentheses plus open parentheses x minus a close parentheses straight f apostrophe open parentheses a close parentheses plus fraction numerator open parentheses x minus a close parentheses squared over denominator 2 factorial end fraction straight f apostrophe apostrophe open parentheses a close parentheses plus... plus fraction numerator open parentheses x minus a close parentheses to the power of r over denominator r factorial end fraction straight f to the power of open parentheses r close parentheses end exponent open parentheses a close parentheses plus...

How do I calculate the derivatives at x=a?

  • To calculate y apostrophe open parentheses a close parentheses

    • substitute in x equals a and y equals b to the differential equation

    • rearrange to make fraction numerator straight d y over denominator straight d x end fraction the subject

  • To calculate y apostrophe apostrophe open parentheses a close parentheses

    • differentiate both sides of the differential equation with respect to x

      • this may involve implicit differentiation

    • substitute in x equals a and y equals b to both sides

    • then rearrange to make fraction numerator straight d squared y over denominator straight d x squared end fraction the subject

  • This process is repeated to find fraction numerator straight d cubed y over denominator straight d x cubed end fraction etc.

How do I find higher-order derivatives?

  • The differentiation involved gets harder and harder for higher-order derivatives

    • All derivatives must be with respect to x

      • which means functions of y require implicit differentiation

      • which could include implicit chain, product or quotient rules

    • There are also derivatives of derivatives that can be simplified

      • e.g. table row cell fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d squared y over denominator straight d x squared end fraction close parentheses end cell equals cell fraction numerator straight d cubed y over denominator straight d x cubed end fraction end cell end table

  • The table below shows some common examples

Term

Derivative, fraction numerator straight d over denominator straight d x end fraction open parentheses... close parentheses

Result

x squared

fraction numerator straight d over denominator straight d x end fraction open parentheses x squared close parentheses

2 x

y

fraction numerator straight d over denominator straight d x end fraction open parentheses y close parentheses

fraction numerator straight d y over denominator straight d x end fraction

y squared

fraction numerator straight d over denominator straight d x end fraction open parentheses y squared close parentheses equals fraction numerator straight d over denominator straight d y end fraction open parentheses y squared close parentheses cross times fraction numerator straight d y over denominator straight d x end fraction

2 y fraction numerator straight d y over denominator straight d x end fraction

fraction numerator straight d y over denominator straight d x end fraction

fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses

fraction numerator straight d squared y over denominator straight d x squared end fraction

fraction numerator straight d squared y over denominator straight d x squared end fraction

fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d squared y over denominator straight d x squared end fraction close parentheses

fraction numerator straight d cubed y over denominator straight d x cubed end fraction

x y

fraction numerator straight d over denominator straight d x end fraction open parentheses x close parentheses y plus x fraction numerator straight d over denominator straight d x end fraction open parentheses y close parentheses

y plus x fraction numerator straight d y over denominator straight d x end fraction

straight e to the power of 2 y end exponent fraction numerator straight d y over denominator straight d x end fraction

fraction numerator straight d over denominator straight d x end fraction open parentheses straight e to the power of 2 y end exponent close parentheses fraction numerator straight d y over denominator straight d x end fraction plus straight e to the power of 2 y end exponent fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses
equals fraction numerator straight d over denominator straight d y end fraction open parentheses straight e to the power of 2 y end exponent close parentheses fraction numerator straight d y over denominator straight d x end fraction cross times fraction numerator straight d y over denominator straight d x end fraction plus straight e to the power of 2 y end exponent fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses

2 straight e to the power of 2 y end exponent open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses squared plus straight e to the power of 2 y end exponent fraction numerator straight d squared y over denominator straight d x squared end fraction

open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses to the power of 5

5 open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses to the power of 4 cross times fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses

5 open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses to the power of 4 fraction numerator straight d squared y over denominator straight d x squared end fraction

Examiner Tips and Tricks

Make sure you know the difference between powers of derivatives and higher-order derivatives.

  • E.g. open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses squared is the first derivative of y with respect to x, squared

  • fraction numerator straight d squared y over denominator straight d x squared end fraction is the second derivative of y with respect to x

  • They are not the same thing!

Worked Example

The Taylor series expansion of straight f open parentheses x close parentheses about x equals a is given by

straight f open parentheses x close parentheses equals straight f open parentheses a close parentheses plus open parentheses x minus a close parentheses straight f apostrophe open parentheses a close parentheses plus fraction numerator open parentheses x minus a close parentheses squared over denominator 2 factorial end fraction straight f apostrophe apostrophe open parentheses a close parentheses plus... plus fraction numerator open parentheses x minus a close parentheses to the power of r over denominator r factorial end fraction straight f to the power of open parentheses r close parentheses end exponent open parentheses a close parentheses plus...

A differential equation is given by

y cubed fraction numerator straight d y over denominator straight d x end fraction equals ln y plus x squared

where y equals 1 at x equals 2.

Determine a series solution for y, in ascending powers of open parentheses x minus 2 close parentheses, up to and including the term in open parentheses x minus 2 close parentheses squared, giving each coefficient in simplest form.

Answer:

Write out the relevant terms of the Taylor series formula, changing straight f into y and substituting in a equals 2

y open parentheses x close parentheses equals y open parentheses 2 close parentheses plus open parentheses x minus 2 close parentheses y apostrophe open parentheses 2 close parentheses plus fraction numerator open parentheses x minus 2 close parentheses squared over denominator 2 factorial end fraction y apostrophe apostrophe open parentheses 2 close parentheses plus...

Find y open parentheses 2 close parentheses, the value of y when x equals 2 (it is given in the question)

y open parentheses 2 close parentheses equals 1

Next find y apostrophe open parentheses 2 close parentheses

First substitute x equals 2 and y equals 1 into the original differential equation

1 cubed fraction numerator straight d y over denominator straight d x end fraction equals ln 1 plus 2 squared

Then make fraction numerator straight d y over denominator straight d x end fraction the subject (this gives the value of y apostrophe open parentheses 2 close parentheses)

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell 0 plus 4 end cell row cell y apostrophe open parentheses 2 close parentheses end cell equals 4 end table

To find y apostrophe apostrophe open parentheses 2 close parentheses, don't differentiate the version with numbers substituted in

Instead, go back to the original differential equation and differentiate both sides with respect to x

table row cell fraction numerator straight d over denominator straight d x end fraction open parentheses y cubed fraction numerator straight d y over denominator straight d x end fraction close parentheses end cell equals cell fraction numerator straight d over denominator straight d x end fraction open parentheses ln y plus x squared close parentheses end cell end table

It is easier here to start on the right-hand side, which can be separated as follows

table row blank blank cell fraction numerator straight d over denominator straight d x end fraction open parentheses ln y close parentheses plus fraction numerator straight d over denominator straight d x end fraction open parentheses x squared close parentheses end cell end table

To calculate table row blank blank cell fraction numerator straight d over denominator straight d x end fraction open parentheses ln y close parentheses end cell end table, use implicit differentiation

table row cell fraction numerator straight d over denominator straight d x end fraction open parentheses ln y close parentheses end cell equals cell fraction numerator straight d over denominator straight d y end fraction open parentheses ln y close parentheses cross times fraction numerator straight d y over denominator straight d x end fraction end cell row blank equals cell 1 over y fraction numerator straight d y over denominator straight d x end fraction end cell end table

To calculate fraction numerator straight d over denominator straight d x end fraction open parentheses x squared close parentheses, differentiate x squared with respect to x

fraction numerator straight d over denominator straight d x end fraction open parentheses x squared close parentheses equals 2 x

Now look at the left-hand side, which is the derivative of a product of terms

table row blank blank cell fraction numerator straight d over denominator straight d x end fraction open parentheses y cubed fraction numerator straight d y over denominator straight d x end fraction close parentheses end cell end table

Apply the product rule, showing clearly the derivatives with respect to x

table row blank blank cell fraction numerator straight d over denominator straight d x end fraction open parentheses y cubed close parentheses fraction numerator straight d y over denominator straight d x end fraction plus y cubed fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses end cell end table

Use implicit differentiation to simplify the part table row blank blank cell fraction numerator straight d over denominator straight d x end fraction open parentheses y cubed close parentheses end cell end table

table row cell fraction numerator straight d over denominator straight d x end fraction open parentheses y cubed close parentheses end cell equals cell fraction numerator straight d over denominator straight d y end fraction open parentheses y cubed close parentheses cross times fraction numerator straight d y over denominator straight d x end fraction end cell row blank equals cell 3 y squared fraction numerator straight d y over denominator straight d x end fraction end cell end table

Also simplify the derivative of a derivative, table row blank blank cell fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses end cell end table

table row cell fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses end cell equals cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell end table

Substituting these parts back into the left-hand side

table row blank blank cell 3 y squared fraction numerator straight d y over denominator straight d x end fraction cross times fraction numerator straight d y over denominator straight d x end fraction plus y cubed fraction numerator straight d squared y over denominator straight d x squared end fraction end cell end table

Simplify the first term using that fraction numerator straight d y over denominator straight d x end fraction cross times fraction numerator straight d y over denominator straight d x end fraction equals open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses squared

table row blank blank cell 3 y squared open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses squared plus y cubed fraction numerator straight d squared y over denominator straight d x squared end fraction end cell end table

Put the left-hand side and right-hand side back together

table row cell 3 y squared open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses squared plus y cubed fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell 1 over y fraction numerator straight d y over denominator straight d x end fraction plus 2 x end cell end table

To find y apostrophe apostrophe open parentheses 2 close parentheses, substitute x equals 2 and y equals 1 into the equation above and make table row blank blank cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell end table the subject

  • open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses subscript x equals 2 end subscript equals y apostrophe open parentheses 2 close parentheses equals 4, as found above

table row cell 3 cross times 1 squared open parentheses 4 close parentheses squared plus 1 cubed fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell 1 over 1 cross times 4 plus 2 cross times 2 end cell row cell 48 plus fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell 4 plus 4 end cell row cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell negative 40 end cell row cell y apostrophe apostrophe open parentheses 2 close parentheses end cell equals cell negative 40 end cell end table

Finally, substitute y open parentheses 2 close parentheses equals 1, y apostrophe open parentheses 2 close parentheses equals 4 and y apostrophe apostrophe open parentheses 2 close parentheses equals negative 40 into the Taylor series

table row cell y open parentheses x close parentheses end cell equals cell y open parentheses 2 close parentheses plus open parentheses x minus 2 close parentheses y apostrophe open parentheses 2 close parentheses plus fraction numerator open parentheses x minus 2 close parentheses squared over denominator 2 factorial end fraction y apostrophe apostrophe open parentheses 2 close parentheses plus... end cell row blank equals cell 1 plus open parentheses x minus 2 close parentheses cross times 4 plus fraction numerator open parentheses x minus 2 close parentheses squared over denominator 2 cross times 1 end fraction cross times open parentheses negative 40 close parentheses plus... end cell row blank equals cell 1 plus 4 open parentheses x minus 2 close parentheses minus 20 open parentheses x minus 2 close parentheses squared plus... end cell end table

Write out the series solution for y, up to and including the term in open parentheses x minus 2 close parentheses squared

table row y equals cell 1 plus 4 open parentheses x minus 2 close parentheses minus 20 open parentheses x minus 2 close parentheses squared end cell end table

Examiner Tips and Tricks

Don't forget to put y equals at the start of your series solution, as this is an approximation to the exact curve y that satisfies the differential equation.

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Mark Curtis

Author: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.