Reducing First-Order Differential Equations (Edexcel A Level Further Maths): Revision Note

Exam code: 9FM0

Mark Curtis

Last updated

Reducing first-order differential equations

What does reducing first-order differential equations mean?

  • A hard first-order differential equation can be reduced (transformed) into an easier first-order differential equation

    • using a given transformation

  • The easier differential equation can then be solved

    • e.g. using

      • direct integration

      • separation of variables

      • or the integrating factor

  • The general solution to the easier differential equation can then be transformed back

    • to give the general solution to the harder differential equation

    • from which you can work out the particular solution

      • using the given boundary conditions

What is the dependent variable and what is the independent variable?

  • If the solution to the differential equation fraction numerator straight d y over denominator straight d x end fraction equals straight f open parentheses x comma space y close parentheses is y equals straight g open parentheses x close parentheses, then

    • y is the dependent variable

    • x is the independent variable

      • as y depends on x

Examiner Tips and Tricks

Be careful in modelling questions, as the letters can change, e.g. fraction numerator straight d x over denominator straight d t end fraction equals x plus t squared has a dependent variable of x and an independent variable of t.

How do I transform the dependent variable?

  • If you are given a transformation of the dependent variable

    • i.e. changing open parentheses x comma space y close parentheses into open parentheses x comma space z close parentheses

    • using the transformation

      • y equals straight h open parentheses z close parentheses

      • or z equals straight h to the power of negative 1 end exponent open parentheses y close parentheses

    • then use the chain rule to rewrite fraction numerator straight d y over denominator straight d x end fraction in terms of fraction numerator straight d z over denominator straight d x end fraction

      • fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator straight d y over denominator straight d z end fraction cross times fraction numerator straight d z over denominator straight d x end fraction

      • It sometimes also helps to use that fraction numerator straight d y over denominator straight d z end fraction equals fraction numerator 1 over denominator fraction numerator straight d z over denominator straight d y end fraction end fraction

      • as long as the end result is in open parentheses x comma space z close parentheses only

      • i.e. no y terms

    • then substitute this derivative and the transformation into the differential equation

      • See the worked example below

Worked Example

Use the transformation y equals straight e to the power of z to find the particular solution of the differential equation

fraction numerator straight d y over denominator straight d x end fraction equals x y ln y

where y equals 2 when x equals 0.

Answer:

Identify the variables being transformed

open parentheses x comma space y close parentheses rightwards arrow open parentheses x comma space z close parentheses

This is a transformation of the dependent variable, y

Write fraction numerator straight d y over denominator straight d x end fraction in terms of fraction numerator straight d z over denominator straight d x end fraction using the chain rule

fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator straight d y over denominator straight d z end fraction cross times fraction numerator straight d z over denominator straight d x end fraction

Find fraction numerator straight d y over denominator straight d z end fraction from y equals straight e to the power of z

fraction numerator straight d y over denominator straight d z end fraction equals straight e to the power of z

Substitute this into the chain rule

fraction numerator straight d y over denominator straight d x end fraction equals straight e to the power of z fraction numerator straight d z over denominator straight d x end fraction

Now substitute this derivative into the original differential equation

straight e to the power of z fraction numerator straight d z over denominator straight d x end fraction equals x y ln y

This is not yet in the form open parentheses x comma space z close parentheses, as there are still y terms on the right-hand side

Use y equals straight e to the power of z and ln y equals ln open parentheses straight e to the power of z close parentheses equals z to convert the remaining y terms into z terms

table row cell straight e to the power of z fraction numerator straight d z over denominator straight d x end fraction end cell equals cell x cross times straight e to the power of z cross times z end cell row cell straight e to the power of z fraction numerator straight d z over denominator straight d x end fraction end cell equals cell x z straight e to the power of z end cell row cell fraction numerator straight d z over denominator straight d x end fraction end cell equals cell x z end cell end table

Solve this differential equation using separation of variables

  • Remember to add a constant of integration

table row cell 1 over z fraction numerator straight d z over denominator straight d x end fraction end cell equals x row cell integral 1 over z straight d z end cell equals cell integral x space straight d x end cell row cell ln vertical line z vertical line end cell equals cell x squared over 2 plus c end cell row z equals cell straight e to the power of x squared over 2 plus c end exponent end cell row z equals cell straight e to the power of x squared over 2 end exponent straight e to the power of c end cell row z equals cell A straight e to the power of x squared over 2 end exponent end cell end table

Transform the general solution back to the variables open parentheses x comma space y close parentheses using y equals straight e to the power of z and ln y equals z

table row cell ln y end cell equals cell A straight e to the power of x squared over 2 end exponent end cell row y equals cell straight e to the power of A straight e to the power of x squared over 2 end exponent end exponent end cell end table

Now substitute in the boundary conditions x equals 0 and y equals 2 to find A

table row 2 equals cell straight e to the power of A e to the power of 0 end exponent end cell row 2 equals cell straight e to the power of A end cell row cell ln 2 end cell equals A end table

Substitute this value of A back into the general solution to get the particular solution

table row y equals cell straight e to the power of open parentheses ln 2 close parentheses straight e to the power of x squared over 2 end exponent end exponent end cell end table

This is the answer, but it can also be simplified to y equals open parentheses straight e to the power of ln 2 end exponent close parentheses to the power of straight e to the power of x squared over 2 end exponent end exponent equals 2 to the power of straight e to the power of x squared over 2 end exponent end exponent

How do I transform the independent variable?

  • If you are given a transformation of the independent variable

    • i.e. changing open parentheses x comma space y close parentheses into open parentheses t comma space y close parentheses

    • using the transformation

      • x equals straight h open parentheses t close parentheses

      • or t equals straight h to the power of negative 1 end exponent open parentheses x close parentheses

    • then use the chain rule to rewrite fraction numerator straight d y over denominator straight d x end fraction in terms of fraction numerator straight d y over denominator straight d t end fraction

      • fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator straight d y over denominator straight d t end fraction cross times fraction numerator straight d t over denominator straight d x end fraction

      • It sometimes helps to also use that fraction numerator straight d t over denominator straight d x end fraction equals fraction numerator 1 over denominator fraction numerator straight d x over denominator straight d t end fraction end fraction

      • as long as the end result is in open parentheses t comma space y close parentheses only

      • i.e. no x terms

    • then substitute this derivative and the transformation into the differential equation

      • See the worked example below

Worked Example

Use the transformation x equals 1 over t where t greater than 0 to find the particular solution of the differential equation

x squared fraction numerator straight d y over denominator straight d x end fraction minus x y equals negative 3 over x

where y equals 2 when x equals 1.

Answer:

Identify the variables being transformed

open parentheses x comma space y close parentheses rightwards arrow open parentheses t comma space y close parentheses

This is a transformation of the independent variable, x

Write fraction numerator straight d y over denominator straight d x end fraction in terms of fraction numerator straight d y over denominator straight d t end fraction using the chain rule

fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator straight d y over denominator straight d t end fraction cross times fraction numerator straight d t over denominator straight d x end fraction

To find fraction numerator straight d t over denominator straight d x end fraction from x equals 1 over t equals t to the power of negative 1 end exponent it is easier to use that fraction numerator straight d t over denominator straight d x end fraction equals fraction numerator 1 over denominator fraction numerator straight d x over denominator straight d t end fraction end fraction

table row cell fraction numerator straight d t over denominator straight d x end fraction end cell equals cell fraction numerator 1 over denominator fraction numerator straight d x over denominator straight d t end fraction end fraction end cell row blank equals cell fraction numerator 1 over denominator negative t to the power of negative 2 end exponent end fraction end cell row blank equals cell fraction numerator 1 over denominator open parentheses negative 1 over t squared close parentheses end fraction end cell row blank equals cell 1 divided by fraction numerator negative 1 over denominator t squared end fraction end cell row blank equals cell 1 cross times fraction numerator t squared over denominator negative 1 end fraction end cell row blank equals cell negative t squared end cell end table

Substitute this into the chain rule

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator straight d y over denominator straight d t end fraction cross times open parentheses negative t squared close parentheses end cell row blank equals cell negative t squared fraction numerator straight d y over denominator straight d t end fraction end cell end table

Now substitute this derivative into the original differential equation

x squared open parentheses negative t squared fraction numerator straight d y over denominator straight d t end fraction close parentheses italic minus x y italic equals italic minus 3 over x

This is not yet in the form open parentheses t comma space y close parentheses, as there are still x terms in it

Use x equals 1 over t to convert the remaining x terms into t terms

Error converting from MathML to accessible text.

This is in the correct form fraction numerator straight d y over denominator straight d t end fraction plus straight p open parentheses t close parentheses y equals straight q open parentheses t close parentheses for the integrating factor

  • the integrating factor is straight e to the power of integral straight p open parentheses t close parentheses straight d t end exponent

  • where fraction numerator straight d over denominator straight d t end fraction open parentheses y straight e to the power of integral straight p open parentheses t close parentheses straight d t end exponent close parentheses equals straight q open parentheses t close parentheses straight e to the power of integral straight p open parentheses t close parentheses straight d t end exponent

Find the integrating factor

straight e to the power of integral 1 over t straight d t end exponent equals straight e to the power of ln t end exponent equals t

Solve the differential equation using the integrating factor

  • Remember to add a constant of integration

table row cell fraction numerator straight d over denominator straight d t end fraction open parentheses y t close parentheses end cell equals cell 3 t cross times t end cell row cell fraction numerator straight d over denominator straight d t end fraction open parentheses y t close parentheses end cell equals cell 3 t squared end cell row cell y t end cell equals cell integral 3 t squared straight d t end cell row cell y t end cell equals cell t cubed plus c end cell row y equals cell t squared plus c over t end cell end table

Convert the general solution back into the variables open parentheses x comma space y close parentheses using x equals 1 over t and t equals 1 over x

table row y equals cell open parentheses 1 over x close parentheses squared plus fraction numerator c over denominator open parentheses 1 over x close parentheses end fraction end cell row y equals cell 1 over x squared plus c x end cell end table

Find c by substituting in x equals 1 and y equals 2

table row 2 equals cell 1 over 1 squared plus c cross times 1 end cell row 1 equals c end table

Substitute c equals 1 into the general solution to get the particular solution

y equals 1 over x squared plus x

Examiner Tips and Tricks

Don't forget to add a constant of integration when using the integrating factor, otherwise entire terms will be missing in the general solution!

How do I transform with products or quotients of variables?

  • Transforming the variables open parentheses x comma space y close parentheses into open parentheses x comma space z close parentheses using

    • a product of variables

      • e.g. y equals x squared z

    • or a quotient of variables

      • e.g. y equals z over x

    • can be done using the product rule or quotient rule respectively

  • Some transformations may also involve implicit differentiation

    • e.g. y equals x squared z cubed

      • where fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator straight d over denominator straight d x end fraction open parentheses x squared z cubed close parentheses equals 2 x z cubed plus 3 x squared z squared fraction numerator straight d z over denominator straight d x end fraction

Worked Example

Use the transformation y equals x z to find the particular solution of the differential equation

fraction numerator straight d y over denominator straight d x end fraction equals y over x plus 5 x to the power of 5

where y equals 2 when x equals 1.

Answer:

Identify the variables being transformed

open parentheses x comma space y close parentheses rightwards arrow open parentheses x comma space z close parentheses

This is a transformation of the dependent variable, y

Write fraction numerator straight d y over denominator straight d x end fraction in terms of fraction numerator straight d z over denominator straight d x end fraction using the product rule

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator straight d over denominator straight d x end fraction open parentheses x z close parentheses end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell 1 cross times z plus x cross times fraction numerator straight d z over denominator straight d x end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell z plus x fraction numerator straight d z over denominator straight d x end fraction end cell end table

Substitute this into the original differential equation

table row cell z plus x fraction numerator straight d z over denominator straight d x end fraction end cell equals cell y over x plus 5 x to the power of 5 end cell end table

This is not yet in the form open parentheses x comma space z close parentheses, as there are still y terms on the right-hand side

Use y equals x z to convert the remaining y terms into x and z terms then simplify

table row cell z plus x fraction numerator straight d z over denominator straight d x end fraction end cell equals cell fraction numerator up diagonal strike x z over denominator up diagonal strike x end fraction plus 5 x to the power of 5 end cell row cell up diagonal strike z plus x fraction numerator straight d z over denominator straight d x end fraction end cell equals cell up diagonal strike z plus 5 x to the power of 5 end cell row cell x fraction numerator straight d z over denominator straight d x end fraction end cell equals cell 5 x to the power of 5 end cell row cell fraction numerator straight d z over denominator straight d x end fraction end cell equals cell 5 x to the power of 4 end cell end table

Solve this differential equation by direct integration of the right-hand side

  • Remember to add a constant of integration

z equals x to the power of 5 plus c

Transform the general solution back to the variables open parentheses x comma space y close parentheses using y equals x z so z equals y over x

table row cell y over x end cell equals cell x to the power of 5 plus c end cell row y equals cell x to the power of 6 plus c x end cell end table

Now substitute in the boundary conditions x equals 1 and y equals 2 to find c

table row 2 equals cell 1 to the power of 6 plus c cross times 1 end cell row 1 equals c end table

Substitute this value of c back into the general solution to get the particular solution

table row y equals cell x to the power of 6 plus x end cell end table

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Mark Curtis

Author: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.