Reducing Second-Order Differential Equations (Edexcel A Level Further Maths): Revision Note

Exam code: 9FM0

Mark Curtis

Last updated

Reducing second-order differential equations

What does reducing second-order differential equations mean?

  • A hard second-order differential equation can be reduced (transformed)

    • into an easier second-order differential equation

      • of the form a y apostrophe apostrophe plus b y apostrophe plus c y equals...

    • using a given transformation

  • The easier differential equation can then be solved

    • by finding

      • the complementary function

      • and the particular integral

  • The general solution to the easier differential equation can then be transformed back

    • to give the general solution to the harder differential equation

    • from which you can work out the particular solution

      • using the given boundary conditions

What is the dependent variable and what is the independent variable?

  • If the solution to the differential equation fraction numerator straight d squared y over denominator straight d x squared end fraction equals straight f open parentheses x comma space y comma fraction numerator straight d y over denominator straight d x end fraction space close parentheses is y equals straight g open parentheses x close parentheses, then

    • y is the dependent variable

    • x is the independent variable

      • as y depends on x

Examiner Tips and Tricks

Be careful in modelling questions, as the letters can change, e.g. fraction numerator straight d squared x over denominator straight d t squared end fraction plus x equals t squared has a dependent variable of x and an independent variable of t.

How do I transform the dependent variable?

  • If you are given a transformation of the dependent variable

    • i.e. changing open parentheses x comma space y close parentheses into open parentheses x comma space z close parentheses

    • using the transformation

      • y equals straight h open parentheses z close parentheses

      • or z equals straight h to the power of negative 1 end exponent open parentheses y close parentheses

    • then follow these steps:

  • STEP 1
    Find fraction numerator straight d y over denominator straight d x end fraction in terms of fraction numerator straight d z over denominator straight d x end fraction using the chain rule

    • fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator straight d y over denominator straight d z end fraction cross times fraction numerator straight d z over denominator straight d x end fraction

    • It sometimes also helps to use that fraction numerator straight d y over denominator straight d z end fraction equals fraction numerator 1 over denominator fraction numerator straight d z over denominator straight d y end fraction end fraction

    • as long as the end result is written in open parentheses x comma space z close parentheses only

  • STEP 2
    Find fraction numerator straight d squared y over denominator straight d x squared end fraction by taking fraction numerator straight d over denominator straight d x end fraction of both sides of fraction numerator straight d y over denominator straight d x end fraction equals... from Step 1

    • Use implicit differentiation where necessary

      • fraction numerator straight d over denominator straight d x end fraction open parentheses... close parentheses equals fraction numerator straight d over denominator straight d z end fraction open parentheses... close parentheses cross times fraction numerator straight d z over denominator straight d x end fraction

    • Make sure the final result is written in open parentheses x comma space z close parentheses only

  • STEP 3
    Substitute the first derivative and second derivative into the differential equation

    • Use the transformation to make sure the final differential equation is written in open parentheses x comma space z close parentheses only

      • i.e. no y terms

      • See the worked example below

Worked Example

Use the transformation y equals 1 over z to find the general solution of the differential equation

fraction numerator straight d squared y over denominator straight d x squared end fraction minus 2 over y open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses squared minus 5 fraction numerator straight d y over denominator straight d x end fraction plus 6 y equals negative straight e to the power of x y squared

Answer:

Identify the variables being transformed

open parentheses x comma space y close parentheses rightwards arrow open parentheses x comma space z close parentheses

This is a transformation of the dependent variable, y

Write fraction numerator straight d y over denominator straight d x end fraction in terms of fraction numerator straight d z over denominator straight d x end fraction using the chain rule

fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator straight d y over denominator straight d z end fraction cross times fraction numerator straight d z over denominator straight d x end fraction

Find fraction numerator straight d y over denominator straight d z end fraction from y equals 1 over z equals z to the power of negative 1 end exponent

fraction numerator straight d y over denominator straight d z end fraction equals negative straight z to the power of negative 2 end exponent equals negative 1 over straight z squared

Substitute this into the chain rule

fraction numerator straight d y over denominator straight d x end fraction equals negative 1 over z squared fraction numerator straight d z over denominator straight d x end fraction

Now differentiate both sides of this derivative by fraction numerator straight d over denominator straight d x end fraction

fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses equals fraction numerator straight d over denominator straight d x end fraction open parentheses negative 1 over z squared fraction numerator straight d z over denominator straight d x end fraction close parentheses

Simplify the left-hand side and use the product rule on the right-hand side

table row cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell fraction numerator straight d over denominator straight d x end fraction open parentheses negative 1 over z squared close parentheses fraction numerator straight d z over denominator straight d x end fraction plus open parentheses negative 1 over z squared close parentheses fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d z over denominator straight d x end fraction close parentheses end cell row cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell fraction numerator straight d over denominator straight d x end fraction open parentheses negative z to the power of negative 2 end exponent close parentheses fraction numerator straight d z over denominator straight d x end fraction minus 1 over z squared fraction numerator straight d squared straight z over denominator straight d x squared end fraction end cell end table

Use implicit differentiation on the part table row blank blank cell fraction numerator straight d over denominator straight d x end fraction open parentheses negative z to the power of negative 2 end exponent close parentheses end cell end table

table row cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell fraction numerator straight d over denominator straight d z end fraction open parentheses negative z to the power of negative 2 end exponent close parentheses cross times fraction numerator straight d z over denominator straight d x end fraction cross times fraction numerator straight d z over denominator straight d x end fraction minus 1 over z squared fraction numerator straight d squared straight z over denominator straight d x squared end fraction end cell row cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell fraction numerator straight d over denominator straight d z end fraction open parentheses negative z to the power of negative 2 end exponent close parentheses open parentheses fraction numerator straight d z over denominator straight d x end fraction close parentheses squared minus 1 over z squared fraction numerator straight d squared straight z over denominator straight d x squared end fraction end cell row cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell 2 z to the power of negative 3 end exponent open parentheses fraction numerator straight d z over denominator straight d x end fraction close parentheses squared minus 1 over z squared fraction numerator straight d squared straight z over denominator straight d x squared end fraction end cell row cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell 2 over z cubed open parentheses fraction numerator straight d z over denominator straight d x end fraction close parentheses squared minus 1 over z squared fraction numerator straight d squared straight z over denominator straight d x squared end fraction end cell end table

Now substitute fraction numerator straight d y over denominator straight d x end fraction and fraction numerator straight d squared y over denominator straight d x squared end fraction into the original differential equation

open parentheses table row blank blank cell 2 over z cubed open parentheses fraction numerator straight d z over denominator straight d x end fraction close parentheses squared minus 1 over z squared fraction numerator straight d squared straight z over denominator straight d x squared end fraction end cell end table close parentheses minus 2 over y open parentheses negative 1 over z squared fraction numerator straight d z over denominator straight d x end fraction close parentheses squared minus 5 open parentheses negative 1 over z squared fraction numerator straight d z over denominator straight d x end fraction close parentheses plus 6 y equals negative straight e to the power of x y squared

This is not yet in the form open parentheses x comma space z close parentheses, as there are still y terms on both sides of the equation

Use y equals 1 over z to convert the remaining y terms into z terms, then simplify

table row cell 2 over z cubed open parentheses fraction numerator straight d z over denominator straight d x end fraction close parentheses squared minus 1 over z squared fraction numerator straight d squared straight z over denominator straight d x squared end fraction minus 2 z open parentheses negative 1 over z squared fraction numerator straight d z over denominator straight d x end fraction close parentheses squared minus 5 open parentheses negative 1 over z squared fraction numerator straight d z over denominator straight d x end fraction close parentheses plus 6 over z end cell equals cell negative straight e to the power of x over straight z squared end cell row cell 2 over z cubed open parentheses fraction numerator straight d z over denominator straight d x end fraction close parentheses squared minus 1 over z squared fraction numerator straight d squared straight z over denominator straight d x squared end fraction minus 2 z cross times 1 over z to the power of 4 open parentheses fraction numerator straight d z over denominator straight d x end fraction close parentheses squared plus 5 over z squared fraction numerator straight d z over denominator straight d x end fraction plus 6 over z end cell equals cell negative straight e to the power of x over straight z squared end cell row cell up diagonal strike 2 over z cubed open parentheses fraction numerator straight d z over denominator straight d x end fraction close parentheses squared end strike minus 1 over z squared fraction numerator straight d squared straight z over denominator straight d x squared end fraction up diagonal strike negative 2 over z cubed open parentheses fraction numerator straight d z over denominator straight d x end fraction close parentheses squared end strike plus 5 over z squared fraction numerator straight d z over denominator straight d x end fraction plus 6 over z end cell equals cell negative straight e to the power of x over straight z squared end cell row cell negative 1 over z squared fraction numerator straight d squared straight z over denominator straight d x squared end fraction plus 5 over z squared fraction numerator straight d z over denominator straight d x end fraction plus 6 over z end cell equals cell negative straight e to the power of x over z squared end cell end table

Multiply both sides by negative z squared

table row cell fraction numerator straight d squared straight z over denominator straight d x squared end fraction minus 5 fraction numerator straight d z over denominator straight d x end fraction minus 6 z end cell equals cell straight e to the power of x end cell end table

Solve the auxiliary equation

table row cell m squared minus 5 m minus 6 end cell equals 0 row cell open parentheses m minus 6 close parentheses open parentheses m plus 1 close parentheses end cell equals 0 row m equals cell 6 space space or space space m equals negative 1 end cell end table

Write out the complementary function

A straight e to the power of 6 x end exponent plus B straight e to the power of negative x end exponent

Find the particular integral, of the form z equals lambda straight e to the power of x

table row cell lambda straight e to the power of x minus 5 straight lambda straight e to the power of x minus 6 straight lambda straight e to the power of x end cell identical to cell straight e to the power of x end cell row cell negative 10 straight lambda end cell equals 1 row straight lambda equals cell negative 1 over 10 end cell end table

Find the general solution for z in terms of x

z equals A straight e to the power of 6 x end exponent plus B straight e to the power of negative x end exponent minus 1 over 10 straight e to the power of x

Use the transformation y equals 1 over z to find the general solution for y in terms of x

y equals fraction numerator 1 over denominator A straight e to the power of 6 x end exponent plus B straight e to the power of negative x end exponent minus 1 over 10 straight e to the power of x end fraction

This is the general solution, but it can also be rearranged (with new arbitrary constants) to y equals fraction numerator 10 over denominator C straight e to the power of 6 x end exponent plus D straight e to the power of negative x end exponent minus straight e to the power of x end fraction

How do I transform the independent variable?

  • If you are given a transformation of the independent variable

    • i.e. changing open parentheses x comma space y close parentheses into open parentheses t comma space y close parentheses

    • using the transformation

      • x equals straight h open parentheses t close parentheses

      • or t equals straight h to the power of negative 1 end exponent open parentheses x close parentheses

    • then follow these steps:

  • STEP 1
    Find fraction numerator straight d y over denominator straight d x end fraction in terms of fraction numerator straight d y over denominator straight d t end fraction using the chain rule

    • fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator straight d y over denominator straight d t end fraction cross times fraction numerator straight d t over denominator straight d x end fraction

    • It sometimes helps to also use that fraction numerator straight d x over denominator straight d t end fraction equals fraction numerator 1 over denominator fraction numerator straight d t over denominator straight d x end fraction end fraction

    • as long as the end result is written in open parentheses t comma space y close parentheses only

  • STEP 2
    Find fraction numerator straight d squared y over denominator straight d x squared end fraction by taking fraction numerator straight d over denominator straight d x end fraction of both sides of fraction numerator straight d y over denominator straight d x end fraction equals... from Step 1

    • Use implicit differentiation on the right-hand side

    • In particular, use the result that

      • fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d y over denominator straight d t end fraction close parentheses equals fraction numerator straight d over denominator straight d t end fraction open parentheses fraction numerator straight d y over denominator straight d t end fraction close parentheses cross times fraction numerator straight d t over denominator straight d x end fraction

    • Make sure the final result is written in open parentheses t comma space y close parentheses only

  • STEP 3
    Substitute the first derivative and second derivative into the differential equation

    • Use the transformation to make sure the final differential equation is written in open parentheses t comma space y close parentheses only

      • i.e. no x terms

      • See the worked example below

Worked Example

Use the transformation x equals straight e to the power of t to find the particular solution of the differential equation

x squared fraction numerator straight d squared y over denominator straight d x squared end fraction plus 5 x fraction numerator straight d y over denominator straight d x end fraction plus 4 y equals ln x

where y equals 3 over 4 and fraction numerator straight d y over denominator straight d x end fraction equals negative 3 over 4when x equals 1.

Answer:

Identify the variables being transformed

open parentheses x comma space y close parentheses rightwards arrow open parentheses t comma space y close parentheses

This is a transformation of the independent variable, x

Write fraction numerator straight d y over denominator straight d x end fraction in terms of fraction numerator straight d y over denominator straight d t end fraction using the chain rule

fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator straight d y over denominator straight d t end fraction cross times fraction numerator straight d t over denominator straight d x end fraction

To find fraction numerator straight d t over denominator straight d x end fraction from x equals straight e to the power of t it is easier to use that fraction numerator straight d t over denominator straight d x end fraction equals fraction numerator 1 over denominator fraction numerator straight d x over denominator straight d t end fraction end fraction

table row cell fraction numerator straight d t over denominator straight d x end fraction end cell equals cell fraction numerator 1 over denominator fraction numerator straight d x over denominator straight d t end fraction end fraction end cell row blank equals cell 1 over straight e to the power of t end cell end table

Substitute this into the chain rule

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator straight d y over denominator straight d t end fraction cross times open parentheses 1 over straight e to the power of t close parentheses end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell straight e to the power of negative t end exponent fraction numerator straight d y over denominator straight d t end fraction end cell end table

Now differentiate both sides of this derivative by fraction numerator straight d over denominator straight d x end fraction

fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses equals fraction numerator straight d over denominator straight d x end fraction open parentheses table row blank blank cell straight e to the power of negative t end exponent fraction numerator straight d y over denominator straight d t end fraction end cell end table close parentheses

Both terms on the right-hand side are in terms of t so you can use implicit differentiation before the product rule

fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses equals fraction numerator straight d over denominator straight d t end fraction open parentheses table row blank blank cell straight e to the power of negative t end exponent fraction numerator straight d y over denominator straight d t end fraction end cell end table close parentheses cross times fraction numerator straight d t over denominator straight d x end fraction

Simplify the left-hand side and use the product rule on the right-hand side

table row cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell open parentheses negative straight e to the power of negative t end exponent fraction numerator straight d y over denominator straight d t end fraction plus straight e to the power of negative t end exponent fraction numerator straight d squared y over denominator straight d t squared end fraction close parentheses fraction numerator straight d t over denominator straight d x end fraction end cell end table

To find fraction numerator straight d t over denominator straight d x end fraction from x equals straight e to the power of t use that fraction numerator straight d t over denominator straight d x end fraction equals fraction numerator 1 over denominator fraction numerator straight d x over denominator straight d t end fraction end fraction

table row cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell open parentheses negative straight e to the power of negative t end exponent fraction numerator straight d y over denominator straight d t end fraction plus straight e to the power of negative t end exponent fraction numerator straight d squared y over denominator straight d t squared end fraction close parentheses 1 over straight e to the power of t end cell row cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell negative straight e to the power of negative 2 t end exponent fraction numerator straight d y over denominator straight d t end fraction plus straight e to the power of negative 2 t end exponent fraction numerator straight d squared y over denominator straight d t squared end fraction end cell end table

Now substitute fraction numerator straight d y over denominator straight d x end fraction and fraction numerator straight d squared y over denominator straight d x squared end fraction into the original differential equation

x squared open parentheses table row blank blank cell negative straight e to the power of negative 2 t end exponent fraction numerator straight d y over denominator straight d t end fraction plus straight e to the power of negative 2 t end exponent fraction numerator straight d squared y over denominator straight d t squared end fraction end cell end table close parentheses plus 5 x open parentheses table row blank blank cell straight e to the power of negative t end exponent fraction numerator straight d y over denominator straight d t end fraction end cell end table close parentheses plus 4 y equals ln x

This is not yet in the form open parentheses t comma space y close parentheses, as there are still x terms remaining

Use x equals straight e to the power of t to convert the remaining x terms into t terms, then simplify

table row cell open parentheses straight e to the power of t close parentheses squared open parentheses negative straight e to the power of negative 2 t end exponent fraction numerator straight d y over denominator straight d t end fraction plus straight e to the power of negative 2 t end exponent fraction numerator straight d squared y over denominator straight d t squared end fraction close parentheses plus 5 open parentheses straight e to the power of t close parentheses open parentheses straight e to the power of negative t end exponent fraction numerator straight d y over denominator straight d t end fraction close parentheses plus 4 y end cell equals cell ln open parentheses straight e to the power of t close parentheses end cell row cell straight e to the power of 2 t end exponent open parentheses negative straight e to the power of negative 2 t end exponent fraction numerator straight d y over denominator straight d t end fraction plus straight e to the power of negative 2 t end exponent fraction numerator straight d squared y over denominator straight d t squared end fraction close parentheses plus 5 straight e to the power of t open parentheses straight e to the power of negative t end exponent fraction numerator straight d y over denominator straight d t end fraction close parentheses plus 4 y end cell equals t row cell negative fraction numerator straight d y over denominator straight d t end fraction plus fraction numerator straight d squared y over denominator straight d t squared end fraction plus 5 fraction numerator straight d y over denominator straight d t end fraction plus 4 y end cell equals t row cell fraction numerator straight d squared y over denominator straight d t squared end fraction plus 4 fraction numerator straight d y over denominator straight d t end fraction plus 4 y end cell equals t end table

Solve the auxiliary equation

table row cell m squared plus 4 m plus 4 end cell equals 0 row cell open parentheses m plus 2 close parentheses squared end cell equals 0 row m equals cell negative 2 space space repeated end cell end table

Write out the complementary function

open parentheses A plus B t close parentheses straight e to the power of negative 2 t end exponent

Find the particular integral, of the form y equals lambda plus mu t

table row cell 4 mu plus 4 lambda plus 4 mu t end cell identical to t row cell 4 mu end cell equals cell 1 space rightwards double arrow space mu equals 1 fourth end cell row cell mu plus lambda end cell equals cell 0 space rightwards double arrow space lambda equals negative 1 fourth end cell end table

Find the general solution for y in terms of t

y equals open parentheses A plus B t close parentheses straight e to the power of negative 2 t end exponent minus 1 fourth plus 1 fourth t

Use the transformation x equals straight e to the power of t (i.e. t equals ln x) to find the general solution for y in terms of t

y equals open parentheses A plus B ln x close parentheses straight e to the power of negative 2 ln x end exponent minus 1 fourth plus 1 fourth ln x
y equals open parentheses A plus B ln x close parentheses straight e to the power of ln open parentheses x to the power of negative 2 end exponent close parentheses end exponent minus 1 fourth plus 1 fourth ln x
y equals open parentheses A plus B ln x close parentheses x to the power of negative 2 end exponent minus 1 fourth plus 1 fourth ln x
y equals A x to the power of negative 2 end exponent plus B x to the power of negative 2 end exponent ln x minus 1 fourth plus 1 fourth ln x

This is the general solution so to find the particular solution first use that y equals 3 over 4 when x equals 1

table row cell 3 over 4 end cell equals cell A plus B cross times 0 minus 1 fourth plus 1 fourth cross times 0 end cell row 1 equals A end table

Then use that fraction numerator straight d y over denominator straight d x end fraction equals negative 3 over 4when x equals 1, which requires differentiating the general solution (with A equals 1) first

table row y equals cell x to the power of negative 2 end exponent plus B x to the power of negative 2 end exponent ln x minus 1 fourth plus 1 fourth ln x end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative 2 x to the power of negative 3 end exponent plus B open parentheses negative 2 x to the power of negative 3 end exponent ln x plus x to the power of negative 2 end exponent cross times 1 over x close parentheses minus 0 plus 1 fourth cross times 1 over x end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell negative 2 x to the power of negative 3 end exponent plus B open parentheses negative 2 x to the power of negative 3 end exponent ln x plus x to the power of negative 3 end exponent close parentheses plus fraction numerator 1 over denominator 4 x end fraction end cell end table

Substitute in fraction numerator straight d y over denominator straight d x end fraction equals negative 3 over 4 when x equals 1

table row cell negative 3 over 4 end cell equals cell negative 2 plus B open parentheses negative 2 cross times 0 plus 1 close parentheses plus 1 fourth end cell row cell negative 1 end cell equals cell negative 2 plus B end cell row 1 equals B end table

Substitute A equals 1 and B equals 1 into the general solution to get the particular solution

y equals x to the power of negative 2 end exponent plus x to the power of negative 2 end exponent ln x minus 1 fourth plus 1 fourth ln x

y equals 1 over x squared plus fraction numerator ln x over denominator x squared end fraction minus 1 fourth plus 1 fourth ln x

How do I transform with products or quotients of variables?

  • Transforming the variables open parentheses x comma space y close parentheses into open parentheses x comma space z close parentheses using

    • a product of variables

      • e.g. y equals x squared z

    • or a quotient of variables

      • e.g. y equals z over x

    • can be done using the product rule or quotient rule respectively

  • Some transformations may also involve implicit differentiation

    • e.g. y equals x squared z cubed

      • where fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator straight d over denominator straight d x end fraction open parentheses x squared z cubed close parentheses equals 2 x z cubed plus 3 x squared z squared fraction numerator straight d z over denominator straight d x end fraction

Worked Example

Use the transformation y equals x z to find the general solution of the differential equation

x squared fraction numerator straight d squared y over denominator straight d x squared end fraction plus 2 open parentheses x squared minus x close parentheses fraction numerator straight d y over denominator straight d x end fraction plus open parentheses 5 x squared minus 2 x plus 2 close parentheses y equals x cubed sin x

Answer:

Identify the variables being transformed

open parentheses x comma space y close parentheses rightwards arrow open parentheses x comma space z close parentheses

This is a transformation of the dependent variable, y

Write fraction numerator straight d y over denominator straight d x end fraction in terms of fraction numerator straight d z over denominator straight d x end fraction using the product rule

table row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell fraction numerator straight d over denominator straight d x end fraction open parentheses x z close parentheses end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell 1 cross times z plus x cross times fraction numerator straight d z over denominator straight d x end fraction end cell row cell fraction numerator straight d y over denominator straight d x end fraction end cell equals cell z plus x fraction numerator straight d z over denominator straight d x end fraction end cell end table

Now differentiate both sides of this derivative by fraction numerator straight d over denominator straight d x end fraction

fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator straight d y over denominator straight d x end fraction close parentheses equals fraction numerator straight d over denominator straight d x end fraction open parentheses table row blank blank cell z plus x fraction numerator straight d z over denominator straight d x end fraction end cell end table close parentheses

Simplify the left-hand side and find the derivative in x of the two terms on the right-hand side

table row cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell fraction numerator straight d z over denominator straight d x end fraction plus fraction numerator straight d over denominator straight d x end fraction open parentheses x fraction numerator straight d z over denominator straight d x end fraction close parentheses end cell end table

Use the product rule for the last term, then simplify

table row cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell fraction numerator straight d z over denominator straight d x end fraction plus fraction numerator straight d z over denominator straight d x end fraction plus x fraction numerator straight d squared z over denominator straight d x squared end fraction end cell row cell fraction numerator straight d squared y over denominator straight d x squared end fraction end cell equals cell 2 fraction numerator straight d z over denominator straight d x end fraction plus x fraction numerator straight d squared z over denominator straight d x squared end fraction end cell end table

Now substitute fraction numerator straight d y over denominator straight d x end fraction and fraction numerator straight d squared y over denominator straight d x squared end fraction into the original differential equation

x squared open parentheses table row blank blank cell 2 fraction numerator straight d z over denominator straight d x end fraction plus x fraction numerator straight d squared z over denominator straight d x squared end fraction end cell end table close parentheses plus 2 open parentheses x squared minus x close parentheses open parentheses table row blank blank cell z plus x fraction numerator straight d z over denominator straight d x end fraction end cell end table close parentheses plus open parentheses 5 x squared minus 2 x plus 2 close parentheses y equals x cubed sin x

This is not yet in the form open parentheses x comma space z close parentheses, as there is still a y term on the left-hand side

Use y equals x z to convert the remaining y term int a z term, then simplify

table row cell x squared open parentheses 2 fraction numerator straight d z over denominator straight d x end fraction plus x fraction numerator straight d squared z over denominator straight d x squared end fraction close parentheses plus 2 open parentheses x squared minus x close parentheses open parentheses z plus x fraction numerator straight d z over denominator straight d x end fraction close parentheses plus open parentheses 5 x squared minus 2 x plus 2 close parentheses x z end cell equals cell x cubed sin x end cell row cell up diagonal strike 2 x squared fraction numerator straight d z over denominator straight d x end fraction end strike plus x cubed fraction numerator straight d squared z over denominator straight d x squared end fraction plus up diagonal strike 2 x squared z end strike minus down diagonal strike 2 x z end strike plus 2 x cubed fraction numerator straight d z over denominator straight d x end fraction minus up diagonal strike 2 x squared fraction numerator straight d z over denominator straight d x end fraction end strike plus 5 x cubed z up diagonal strike negative 2 x squared z end strike plus down diagonal strike 2 x z end strike end cell equals cell x cubed sin x end cell row cell x cubed fraction numerator straight d squared z over denominator straight d x squared end fraction plus 2 x cubed fraction numerator straight d z over denominator straight d x end fraction plus 5 x cubed z end cell equals cell x cubed sin x end cell end table

Divide both sides by x cubed

table row cell fraction numerator straight d squared z over denominator straight d x squared end fraction plus 2 fraction numerator straight d z over denominator straight d x end fraction plus 5 z end cell equals cell sin x end cell end table

Solve the auxiliary equation

table row cell m squared plus 2 m plus 5 end cell equals 0 row m equals cell fraction numerator negative 2 plus-or-minus square root of 2 squared minus 4 cross times 1 cross times 5 end root over denominator 2 end fraction end cell row m equals cell fraction numerator negative 2 plus-or-minus square root of negative 16 end root over denominator 2 end fraction end cell row m equals cell fraction numerator negative 2 plus-or-minus 4 straight i over denominator 2 end fraction end cell row m equals cell negative 1 plus-or-minus 2 straight i end cell end table

Write out the complementary function

straight e to the power of negative x end exponent open parentheses A cos 2 x plus B sin 2 x close parentheses

Find the particular integral, of the form z equals lambda cos x plus mu sin x

open parentheses negative lambda cos x minus mu sin x close parentheses plus 2 open parentheses negative lambda sin x plus mu cos x close parentheses plus 5 open parentheses lambda cos x plus mu sin x close parentheses identical to sin x
minus lambda plus 2 mu plus 5 lambda equals 0 space space rightwards double arrow space space lambda equals negative 1 half mu
minus mu minus 2 lambda plus 5 mu equals 1 space space rightwards double arrow space space mu equals 1 fifth space and space space lambda equals negative 1 over 10

Find the general solution for z in terms of x

z equals straight e to the power of negative x end exponent open parentheses A cos 2 x plus B sin 2 x close parentheses minus 1 over 10 cos x plus 1 fifth sin x

Use the transformation y equals x z, i.e. z equals y over x, to find the general solution for y in terms of x

y equals x open parentheses straight e to the power of negative x end exponent open parentheses A cos 2 x plus B sin 2 x close parentheses minus 1 over 10 cos x plus 1 fifth sin x close parentheses

y equals x straight e to the power of negative x end exponent open parentheses A cos 2 x plus B sin 2 x close parentheses minus 1 over 10 x cos x plus 1 fifth x sin x

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Mark Curtis

Author: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.