Modelling using t-formulae (Edexcel A Level Further Maths): Revision Note

Exam code: 9FM0

Mark Curtis

Last updated

Modelling using t-formulae

What are the t-formulae?

  • The three t-formulae state that if t equals tan theta over 2 then

    • sin theta equals fraction numerator 2 t over denominator 1 plus t squared end fraction

    • cos theta equals fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction

    • tan theta equals fraction numerator 2 t over denominator 1 minus t squared end fraction

  • They express sin theta, cos theta and tan theta in terms of one variable only, t

  • From these, you can see the reciprocals

    • cosec theta equals fraction numerator 1 plus t squared over denominator 2 t end fraction

    • sec theta equals fraction numerator 1 plus t squared over denominator 1 minus t squared end fraction

    • cot theta equals fraction numerator 1 minus t squared over denominator 2 t end fraction

Examiner Tips and Tricks

You must learn the t-formulae for sin theta, cos theta and tan theta as they are not given in the formulae booklet!

How do I model situations using the t-formulae?

  • The t-formulae can be used to investigate mathematical models

    • Use t equals tan theta over 2 to rewrite the model in terms of t

      • This gives algebraic fractions in t

      • which can be simplified by adding, dividing, etc

      • and often factorised

  • You may need to adapt the t-substitution to match the model, e.g.:

    • for models in sin 4 theta and cos 4 theta use t equals tan 2 theta

    • for models in tan x over 3 and sin x over 3 use t equals tan x over 6

How do I find derivatives in terms of t?

  • Always differentiate the original equation first, before substituting in t

    • e.g. the model h equals sin 8 x plus cos 8 x can be written in terms of t equals tan 4 x

      • h equals fraction numerator 2 t over denominator 1 plus t squared end fraction plus fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction equals fraction numerator 1 plus 2 t minus t squared over denominator 1 plus t squared end fraction

    • but to find fraction numerator straight d h over denominator straight d x end fraction from this would involve a complicated chain rule (with quotient rule)

      • fraction numerator straight d h over denominator straight d x end fraction equals fraction numerator straight d h over denominator straight d t end fraction cross times fraction numerator straight d t over denominator straight d x end fraction equals fraction numerator straight d over denominator straight d t end fraction open parentheses fraction numerator 1 plus 2 t minus t squared over denominator 1 plus t squared end fraction close parentheses cross times fraction numerator straight d over denominator straight d x end fraction open parentheses tan 4 x close parentheses

    • so instead go back to the original equation h equals sin 8 x plus cos 8 x and find fraction numerator straight d h over denominator straight d x end fraction of this

      • fraction numerator straight d h over denominator straight d x end fraction equals 8 cos 8 x minus 8 sin 8 x

    • then substitute in t equals tan 4 x at the end

      • fraction numerator straight d h over denominator straight d x end fraction equals 8 open parentheses fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction close parentheses minus 8 open parentheses fraction numerator 2 t over denominator 1 plus t squared end fraction close parentheses equals fraction numerator 8 open parentheses 1 minus 2 t minus t squared close parentheses over denominator 1 plus t squared end fraction

Worked Example

The amplitude, A metres, of part of a wave that varies with distance, x metres, is modelled by

A equals 1 plus 4 sin x over 2 minus cos x space space space space space space 0 less than x less than 2 pi

(a) Show that

fraction numerator straight d A over denominator straight d x end fraction equals fraction numerator 2 open parentheses 1 minus t close parentheses open parentheses 1 plus t close parentheses cubed over denominator open parentheses 1 plus t squared close parentheses squared end fraction

where t equals tan x over 4.

Answer:

Differentiate A equals 1 plus 4 sin x over 2 minus cos x with respect to x (avoid substituting t equals tan x over 4 into A first)

fraction numerator straight d A over denominator straight d x end fraction equals 2 cos x over 2 plus sin x

Now convert 2 cos x over 2 plus sin x into t-formulae

If t equals tan x over 4 then sin x over 2 equals fraction numerator 2 t over denominator 1 plus t squared end fraction and cos x over 2 equals fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction

cos x over 2 equals fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction

To find sin x in terms of t, use the double-angle formula sin 2 A identical to 2 sin A cos A

table row cell sin x end cell identical to cell 2 sin x over 2 cos x over 2 end cell row blank equals cell 2 open parentheses fraction numerator 2 t over denominator 1 plus t squared end fraction close parentheses open parentheses fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction close parentheses end cell row blank equals cell fraction numerator 4 t open parentheses 1 minus t squared close parentheses over denominator open parentheses 1 plus t squared close parentheses squared end fraction end cell end table

Substitute cos x over 2 and table row blank blank cell sin x end cell end table into fraction numerator straight d A over denominator straight d x end fraction

fraction numerator straight d A over denominator straight d x end fraction equals 2 open parentheses fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction close parentheses plus table row blank blank cell fraction numerator 4 t open parentheses 1 minus t squared close parentheses over denominator open parentheses 1 plus t squared close parentheses squared end fraction end cell end table

Add the algebraic fractions using a common denominator of open parentheses 1 plus t squared close parentheses squared

fraction numerator straight d A over denominator straight d x end fraction equals fraction numerator 2 open parentheses 1 minus t squared close parentheses open parentheses 1 plus t squared close parentheses plus 4 t open parentheses 1 minus t squared close parentheses over denominator open parentheses 1 plus t squared close parentheses squared end fraction

Factorise out 2 open parentheses 1 minus t squared close parentheses from the numerator

fraction numerator straight d A over denominator straight d x end fraction equals fraction numerator 2 open parentheses 1 minus t squared close parentheses open square brackets open parentheses 1 plus t squared close parentheses plus 2 t close square brackets over denominator open parentheses 1 plus t squared close parentheses squared end fraction

Rearrange open parentheses 1 plus t squared close parentheses plus 2 t to 1 plus 2 t plus t squared, which factorises to open parentheses 1 plus t close parentheses squared

fraction numerator straight d A over denominator straight d x end fraction equals fraction numerator 2 open parentheses 1 minus t squared close parentheses open parentheses 1 plus t close parentheses squared over denominator open parentheses 1 plus t squared close parentheses squared end fraction

To make this look like the answer in the question, use the difference of two squares to write 1 minus t squared as open parentheses 1 plus t close parentheses open parentheses 1 minus t close parentheses

fraction numerator straight d A over denominator straight d x end fraction equals fraction numerator 2 open parentheses 1 plus t close parentheses open parentheses 1 minus t close parentheses open parentheses 1 plus t close parentheses squared over denominator open parentheses 1 plus t squared close parentheses squared end fraction

Now combine the open parentheses 1 plus t close parentheses and open parentheses 1 plus t close parentheses squared in the numerator into one single power

fraction numerator straight d A over denominator straight d x end fraction equals fraction numerator 2 open parentheses 1 minus t close parentheses open parentheses 1 plus t close parentheses cubed over denominator open parentheses 1 plus t squared close parentheses squared end fraction

(b) Given that

fraction numerator straight d squared A over denominator straight d x squared end fraction equals fraction numerator open parentheses 1 plus t close parentheses squared open parentheses t squared minus 4 t plus 1 close parentheses over denominator open parentheses 1 plus t squared close parentheses squared end fraction

determine whether the model represents a peak (crest) or a trough (dip) of the wave.

Answer:

A peak or trough means a maximum or a minimum point, which both occur when fraction numerator straight d A over denominator straight d x end fraction equals 0

Find the value of t that makes fraction numerator straight d A over denominator straight d x end fraction equals 0 using the answer in part (a)

fraction numerator 2 open parentheses 1 minus t close parentheses open parentheses 1 plus t close parentheses cubed over denominator open parentheses 1 plus t squared close parentheses squared end fraction equals 0

Setting the numerator equal to zero gives

t equals 1 space or space t equals negative 1

Check to see if these solutions are within the range 0 less than x less than 2 pi given in the question

For t equals tan x over 4 equals 1 there is one possible solution in the range

table row cell x over 4 end cell equals cell artan open parentheses 1 close parentheses plus n pi end cell row cell x over 4 end cell equals cell pi over 4 plus n pi end cell row x equals cell pi plus 4 n pi end cell row x equals cell... negative 3 pi comma space pi comma space 5 pi comma... end cell end table

table row x equals pi end table

For t equals tan x over 4 equals negative 1 there are no possible solutions in the range

table row cell x over 4 end cell equals cell artan open parentheses negative 1 close parentheses plus n pi end cell row cell x over 4 end cell equals cell negative pi over 4 plus n pi end cell row x equals cell negative pi plus 4 n pi end cell row x equals cell... comma space minus pi comma space 3 pi comma space... end cell end table

This means the maximum or minimum is at x equals pi when t equals 1

To find out the nature of the stationary point, substitute t equals 1 into fraction numerator straight d squared A over denominator straight d x squared end fraction

table row cell fraction numerator straight d squared A over denominator straight d x squared end fraction end cell equals cell fraction numerator open parentheses 1 plus 1 close parentheses squared open parentheses 1 squared minus 4 cross times 1 plus 1 close parentheses over denominator open parentheses 1 plus 1 squared close parentheses squared end fraction end cell row blank equals cell fraction numerator 2 squared cross times open parentheses negative 2 close parentheses over denominator 2 squared end fraction less than 0 end cell end table

The second derivative is negative, so x equals pi is a maximum point

The model represents a peak (crest) of the wave

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Mark Curtis

Author: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.