Trig identities using t-formulae (Edexcel A Level Further Maths): Revision Note

Exam code: 9FM0

Mark Curtis

Last updated

Trig identities using t-formulae

What are the t-formulae?

  • The three t-formulae state that if t equals tan theta over 2 then

    • sin theta equals fraction numerator 2 t over denominator 1 plus t squared end fraction

    • cos theta equals fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction

    • tan theta equals fraction numerator 2 t over denominator 1 minus t squared end fraction

  • They express sin theta, cos theta and tan theta in terms of one variable only, t

  • From these, you can see the reciprocals

    • cosec theta equals fraction numerator 1 plus t squared over denominator 2 t end fraction

    • sec theta equals fraction numerator 1 plus t squared over denominator 1 minus t squared end fraction

    • cot theta equals fraction numerator 1 minus t squared over denominator 2 t end fraction

Examiner Tips and Tricks

You must learn the t-formulae for sin theta, cos theta and tan theta as they are not given in the formulae booklet!

How do I derive the t-formulae?

  • To derive sin theta equals fraction numerator 2 t over denominator 1 plus t squared end fraction

    • first use the double-angle formula sin 2 A identical to 2 sin A cos A

      • sin theta equals 2 sin theta over 2 cos theta over 2

    • then multiply by fraction numerator sec squared theta over 2 over denominator sec squared theta over 2 end fraction and use 1 plus tan squared A identical to sec squared A in the denominator

      • sin theta identical to 2 sin theta over 2 cos theta over 2 cross times fraction numerator sec squared theta over 2 over denominator sec squared theta over 2 end fraction

      • sin theta identical to fraction numerator 2 sin theta over 2 cos theta over 2 sec squared theta over 2 over denominator 1 plus tan squared theta over 2 end fraction

    • Simplify the numerator, 2 s c cross times 1 over c squared equals fraction numerator 2 s over denominator c end fraction equals 2 t

      • sin theta identical to fraction numerator 2 tan theta over 2 over denominator 1 plus tan squared theta over 2 end fraction equals fraction numerator 2 t over denominator 1 plus t squared end fraction

  • To derive cos theta equals fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction

    • first use the double-angle formula cos 2 A identical to cos squared A minus sin squared A

      • cos theta identical to cos squared theta over 2 minus sin squared theta over 2

    • then multiply by fraction numerator sec squared theta over 2 over denominator sec squared theta over 2 end fraction and use 1 plus tan squared A identical to sec squared A in the denominator

      • cos theta identical to open parentheses cos squared theta over 2 minus sin squared theta over 2 close parentheses cross times fraction numerator sec squared theta over 2 over denominator sec squared theta over 2 end fraction

      • cos theta identical to fraction numerator open parentheses cos squared theta over 2 minus sin squared theta over 2 close parentheses sec squared theta over 2 over denominator 1 plus tan squared theta over 2 end fraction

    • Simplify the numerator, open parentheses c squared minus s squared close parentheses cross times 1 over c squared equals 1 minus s squared over c squared equals 1 minus t squared

      • cos theta identical to fraction numerator 1 minus tan squared theta over 2 over denominator 1 plus tan squared theta over 2 end fraction equals fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction

  • To derive tan theta equals fraction numerator 2 t over denominator 1 minus t squared end fraction

    • either use the double-angle formula tan 2 A identical to fraction numerator 2 tan A over denominator 1 minus tan squared A end fraction

      • tan theta identical to fraction numerator 2 tan theta over 2 over denominator 1 minus tan squared theta over 2 end fraction equals fraction numerator 2 t over denominator 1 minus t squared end fraction

    • or substitute the results for sin theta and cos thetaabove into tan theta identical to fraction numerator sin theta over denominator cos theta end fraction

      • tan theta identical to fraction numerator sin theta over denominator cos theta end fraction equals fraction numerator 2 t over denominator 1 plus t squared end fraction divided by fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction equals fraction numerator 2 t over denominator up diagonal strike 1 plus t squared end strike end fraction cross times fraction numerator up diagonal strike 1 plus t squared end strike over denominator 1 minus t squared end fraction equals fraction numerator 2 t over denominator 1 minus t squared end fraction

How do I prove trigonometric identities using the t-formulae?

  • To prove trigonometric identities using t-formulae

    • let t equals tan theta over 2

    • convert the trig functions on one or both sides of the identity into algebraic fractions in t using

      • sin theta equals fraction numerator 2 t over denominator 1 plus t squared end fraction, cos theta equals fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction, tan theta equals fraction numerator 2 t over denominator 1 minus t squared end fraction

      • cosec theta equals fraction numerator 1 plus t squared over denominator 2 t end fraction, sec theta equals fraction numerator 1 plus t squared over denominator 1 minus t squared end fraction, cot theta equals fraction numerator 1 minus t squared over denominator 2 t end fraction

    • rearrange the algebraic fractions in t to prove the identity

      • e.g. adding, subtracting, multiplying, dividing

    • convert back to theta for the final step

      • using t equals tan theta over 2

Examiner Tips and Tricks

You may need to adapt the t-substitution to match the identity, e.g.:

  • for identities in sin 4 theta and cos 4 theta use t equals tan 2 theta

  • for identities in tan x over 3 and sin x over 3 use t equals tan x over 6

Worked Example

Use the substitution t equals tan theta over 2 to prove the identity

sec theta plus tan theta identical to fraction numerator 1 plus tan theta over 2 over denominator 1 minus tan theta over 2 end fraction

for theta not equal to pi over 2 plus n pi and theta not equal to pi plus 2 n pi, where n element of straight integer numbers.

Answer:

Write down cos theta in terms of its t-formula

cos theta equals fraction numerator 1 minus t squared over denominator 1 plus t squared end fraction

Find sec theta by finding the reciprocal of both sides

sec theta equals fraction numerator 1 plus t squared over denominator 1 minus t squared end fraction

Write down tan theta in terms of its t-formula

tan theta equals fraction numerator 2 t over denominator 1 minus t squared end fraction

Substitute sec theta equals fraction numerator 1 plus t squared over denominator 1 minus t squared end fraction and tan theta equals fraction numerator 2 t over denominator 1 minus t squared end fraction into the left-hand side of the identity

L H S equals fraction numerator 1 plus t squared over denominator 1 minus t squared end fraction plus fraction numerator 2 t over denominator 1 minus t squared end fraction

Add the algebraic fractions

L H S equals fraction numerator 1 plus t squared plus 2 t over denominator 1 minus t squared end fraction

The numerator rearranges to 1 plus 2 t plus t squared, which factorises to open parentheses 1 plus t close parentheses squared

The denominator is the difference of two squares, open parentheses 1 plus t close parentheses open parentheses 1 minus t close parentheses

Cancel the common factors

table row cell L H S end cell equals cell fraction numerator open parentheses 1 plus t close parentheses squared over denominator open parentheses 1 plus t close parentheses open parentheses 1 minus t close parentheses end fraction end cell row blank equals cell fraction numerator up diagonal strike open parentheses 1 plus t close parentheses end strike open parentheses 1 plus t close parentheses over denominator up diagonal strike open parentheses 1 plus t close parentheses end strike open parentheses 1 minus t close parentheses end fraction end cell row blank equals cell fraction numerator 1 plus t over denominator 1 minus t end fraction end cell end table

Convert from t back to theta using t equals tan theta over 2

table row cell L H S end cell equals cell fraction numerator 1 plus tan theta over 2 over denominator 1 minus tan theta over 2 end fraction end cell end table

This expression is the correct right-hand side

table row cell L H S end cell equals cell fraction numerator 1 plus tan theta over 2 over denominator 1 minus tan theta over 2 end fraction equals R H S end cell end table

This means

sec theta plus tan theta identical to fraction numerator 1 plus tan theta over 2 over denominator 1 minus tan theta over 2 end fraction

Examiner Tips and Tricks

The reasons for the extra restrictions in the question are that

  • theta not equal to pi over 2 plus n pi where n element of straight integer numbers

    • stops sec theta and tan theta from being undefined

    • and stops the denominator 1 minus tan theta over 2 from being zero

  • theta not equal to pi plus 2 n pi where n element of straight integer numbers

    • stops the tan theta over 2 terms being undefined

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Mark Curtis

Author: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.