Other Functions & Graphs (DP IB Analysis & Approaches (AA): HL): Exam Questions

3 hours28 questions
1a
Sme Calculator
5 marks

Let f open parentheses x close parentheses equals fraction numerator 3 x minus 2 over denominator 2 x plus 1 end fraction, for x not equal to negative 1 half, and g open parentheses x close parentheses equals negative x minus 2,for x element of bold real numbers The graphs of f and g intersect at points straight A and straight B.

Find the coordinates of straight A and straight B.

1b
Sme Calculator
3 marks

Find the length of the line segment AB.

2a2 marks

Consider the functions f left parenthesis x right parenthesis equals negative x to the power of 5 plus 2020 and g left parenthesis x right parenthesis equals fraction numerator 1 over denominator square root of open parentheses 1 minus x close parentheses cubed end root end fraction minus 2 .

Find the coordinates of the y-intercepts for the graph of

(i) f

(ii) g

2b
Sme Calculator
3 marks

Find the coordinates of the x-intercepts for the graph of

(i) f

(ii) g

2c2 marks

For the graph of g , find the equation of

(i) the vertical asymptote

(ii) the horizontal asymptote.

3a
Sme Calculator
5 marks

Consider the function f defined by f open parentheses x close parentheses equals fraction numerator x plus 2 over denominator 2 x minus 3 end fraction, for x not equal to 3 over 2, and the line x minus 7 y plus 2 equals 0. The graph of f and the line intersect at points A and B.

Find the coordinates of A and B.

3b2 marks

Find the midpoint of the line segment AB.

4a
Sme Calculator
2 marks

Let f left parenthesis x right parenthesis equals ln left parenthesis x plus 2 right parenthesis comma space x greater than negative 2 .

Find the coordinates of:

(i) the x minusintercept

(ii) the y minusintercept

4b2 marks

State the equation of the vertical asymptote to the graph of f

4c
Sme Calculator
2 marks

The graph of y equals f left parenthesis x right parenthesis  intersects with its inverse, twice.

Find the two coordinates where f left parenthesis x right parenthesis equals f to the power of negative 1 end exponent left parenthesis x right parenthesis.

5a
Sme Calculator
3 marks

Let f left parenthesis x right parenthesis equals 0.5 e to the power of 2 x end exponent plus 1 comma space for minus 1 less or equal than x less or equal than 2.

On the following grid, sketch the graph of y equals f left parenthesis x right parenthesis.

ib5a-ai-sl-2-4-ib-maths-medium
5b4 marks

The inverse of f can be written in the form of f to the power of negative 1 end exponent left parenthesis x right parenthesis equals A space l n space invisible function application b left parenthesis x minus c right parenthesis. Find the values of A comma b and of c.

6a1 mark

Carbon-14 is a radioactive isotope of the element carbon. Carbon-14 decays exponentially – as it decays, a sample of carbon-14 loses mass. Carbon-14 is used in carbon dating to estimate the age of objects. The time it takes the mass of carbon-14 to halve (called its half-life) is approximately 5700 years.

A model for the mass of carbon-14, m g, in an object of age t years is

            m equals m subscript 0 e to the power of negative k t end exponent

where m subscript 0 space and space k are constants.

For an object initially containing 100g of carbon-14, write down the value of  m subscript 0.

6b2 marks

Briefly explain why, if m subscript 0 equals 100, m will equal 50 space g  when t equals 5700 space years.

6c
Sme Calculator
2 marks

Using the values from part (b), show that the value of k is 1.22 cross times 10 to the power of negative 4 end exponent to three significant figures.

6d
Sme Calculator
2 marks

A different object currently contains 60g of carbon-14. In 2000 years’ time how much carbon-14 will remain in the object?

7a2 marks

A small company makes a profit of £2500 in its first year of business and £3700 in the second year.  The company decides they will use the model

P equals P subscript 0 space y to the power of k

to predict future years’ profits.

£ P is the profit in the y to the power of t h end exponent year of business.

P subscript 0 and k are constants.

Write down two equations connecting P subscript 0 and k.

7b
Sme Calculator
2 marks

Find the values of P subscript 0 and k.

7c
Sme Calculator
2 marks

Find the predicted profit for years 3 and 4.

7d2 marks

Show that

P equals P subscript 0 y to the power of k

can be written in the form

log P equals log P subscript 0 plus k log y

8a1 mark

In an effort to prevent extinction, scientists released some rare birds into a newly constructed nature reserve.

The population of birds, within the reserve, is modelled by

B equals 16 e to the power of 0.85 t end exponent

straight B is the number of birds after t years of being released into the reserve.

Write down the number of birds the scientists released into the nature reserve.

8b
Sme Calculator
2 marks

According to this model, how many birds will be in the reserve after 3 years?

8c
Sme Calculator
2 marks

How long will it take for the population of birds within the reserve to reach 500?

9a
Sme Calculator
3 marks

Rebecca recently had the COVID-19 vaccine. The volume, V, of the vaccine in her blood over time can be modelled by an equation of the form V subscript 1 left parenthesis t right parenthesis equals 1.7 t e to the power of negative 1.25 t end exponent , where V is the volume (in mg) of the vaccine in the bloodstream and  is time measured in days after 9am on Monday.

On the following grid, sketch the graph of y equals V subscript 1 left parenthesis t right parenthesis.

ib9a-ai-sl-2-4-ib-maths-medium
9b
Sme Calculator
2 marks

Find, to the nearest minute, the time when the vaccine volume straight V subscript 1, reaches a maximum value.

9c
Sme Calculator
3 marks

Rebecca experienced side-effects from the vaccine between the times when the volume reached its maximum value until it had dropped to half of its maximum value. Find, to the nearest minute, the length of time that Rebecca experienced side-effects from taking the vaccine.

9d
Sme Calculator
2 marks

The vaccine is medically determined to be no longer in Rebecca’s bloodstream when it drops down to 1% of its maximum value. Find the time that the vaccine is no longer in Rebecca’s bloodstream.

9e
Sme Calculator
1 mark

Rebecca’s friend, Zara, also had the vaccine on the same day. The volume in Zara’s bloodstream can be modelled by an equation of the form of V subscript 2 left parenthesis t right parenthesis equals 1.766 t e to the power of negative 1.3 t end exponent. Calculate, to the nearest minute, how much faster V subscript 2 took to reach a maximum volume compared to V subscript 1.

10a2 marks

Let f open parentheses x close parentheses = e to the power of x plus 1 and g open parentheses x close parentheses = 4 x plus a, where x element of straight real numbers and a is a constant. Find open parentheses g ring operator f close parentheses open parentheses x close parentheses.

10b
Sme Calculator
2 marks

Given that open parentheses g ring operator f close parentheses open parentheses 0 close parentheses equals 2, find the value of a.

10c
Sme Calculator
3 marks

Solve the equation open parentheses g ring operator f close parentheses open parentheses x close parentheses equals 0.

11a
Sme Calculator
3 marks

Let f open parentheses x close parentheses equals a b to the power of x, where x comma space a comma space b element of straight real numbers and x greater-than or slanted equal to 0, a,b > 1. The graph of f contains the points (0, 3) and (2, 75). Find the values of a and b.

11b3 marks

Find an expression for f to the power of negative 1 end exponent open parentheses x close parentheses.

11c
Sme Calculator
2 marks

Find the value of f to the power of negative 1 end exponent(375).

12a
Sme Calculator
2 marks

Consider f open parentheses x close parentheses equals ln open parentheses square root of x squared minus 16 end root close parentheses. Find the largest possible domain straight D subscript f for f to be a function.

12b
Sme Calculator
3 marks

Let f open parentheses x close parentheses equals ln open parentheses square root of x squared minus 16 end root close parentheses, for  x element of straight D subscript f.

Explain why

(i) f is an even function

(ii) the inverse function f to the power of negative 1 end exponent does not exist.

13a
Sme Calculator
5 marks

Let f open parentheses x close parentheses equals fraction numerator 2 open parentheses x plus 1 close parentheses over denominator x minus 1 end fraction, for x not equal to 1, and  g open parentheses x close parentheses equals x plus 1 comma for x element of straight real numbers. The graphs of f and g intersect at points straight A and straight B.

Find the coordinates of straight A and straight B.

13b3 marks

Find the equation of the straight line at passes through straight A and straight B, giving your answer in the form a x plus b y plus d equals 0.

13c2 marks

Write down the gradient of the line that is perpendicular to the line passing through straight A and straight B.

1a2 marks

Consider the function f left parenthesis x right parenthesis equals a left parenthesis 0.75 right parenthesis to the power of x plus b where a and b are constants. The graph of f passes through the points left parenthesis 0 comma 18 right parenthesis and left parenthesis 2 comma 11 right parenthesis and is shown below.

ib1a-ai-sl-2-4-ib-maths-hard

Write down two equations relating a and b .

1b2 marks

Find the value of a and b.

1c2 marks

Write down the equation of the horizontal asymptote of the graph of f.

2a2 marks

The average fat-free mass, M, in kg, of footballers as a function of their age,a , in years, can be given by the logarithmic function:

M left parenthesis a right parenthesis equals 10 space log invisible function application left parenthesis space a minus 15 right parenthesis plus 50 comma space space space space space space 16 less or equal than a less or equal than 25.

Calculate the average fat free mass of players aged:

(i) 16 years

(ii) 25 years.

2b3 marks

Find an expression for a linear model using your answers to part (a) (i) and (ii).

3a2 marks

The number of bacteria, n, in a dish, after t minutes is given by n equals 5231 e to the power of 0.12 t end exponent

Find the initial amount of bacteria.

3b
Sme Calculator
3 marks

Find the amount of bacteria after 12 minutes. Give your answer in the form a cross times 10 to the power of k comma where 1 less or equal than a less than 10 comma k element of Z.

3c
Sme Calculator
2 marks

Find the value of t when n equals 2.7 cross times 10 to the power of 4.

4a2 marks

Let f left parenthesis x right parenthesis equals e to the power of negative x end exponent plus 1 and g left parenthesis x right parenthesis equals 2 x minus m, for x element of straight real numbers, where m is a constant.

Find left parenthesis g ring operator f right parenthesis left parenthesis x right parenthesis.

4b3 marks

Given that limit as x rightwards arrow infinity of left parenthesis g ring operator f right parenthesis left parenthesis x right parenthesis equals negative 1 find the value of m.

5a
Sme Calculator
3 marks

Consider the functions space f left parenthesis x right parenthesis equals 2 space ln invisible function application left parenthesis 5 x minus 1 right parenthesis  and  g left parenthesis x right parenthesis equals ln left parenthesis 5 x minus 1 right parenthesis squared where the domain for each function is as large as possible.

  (i)     Write down the domain for f and the domain for g.

  (ii)    Write down the set of values of x for which f left parenthesis x right parenthesis equals g left parenthesis x right parenthesis.

5b4 marks

  (i)     Find the inverse function of f.

   (ii)    Explain why g does not have an inverse.

5c4 marks

The function h is the same as function g but with its domain restricted to x less or equal than k commawhere k element of straight integer numbers, so that h has an inverse.

  (i)     Write down the largest possible value of k.

  (ii)    Find the inverse function of h.

6a
Sme Calculator
3 marks

Consider the function f left parenthesis x right parenthesis equals 1 half open parentheses e to the power of x plus e to the power of negative x end exponent close parentheses comma space x element of R.

Sketch the graph of f  and write down its range.

6b4 marks

(i)     For k greater than 1 , show that   f left parenthesis x right parenthesis equals k  leads to the equation  straight e to the power of 2 x end exponent minus 2 k straight e to the power of x plus 1 equals 0 .

(ii)    Find the two solutions in terms of k.

6c3 marks

The domain of f  is now restricted to x less or equal than p so that it has an inverse.

(i)      Write down the largest possible value of p .

(ii)     Sketch the graph of f to the power of negative 1 end exponent and state its domain and range.

(iii)    Use the solution to (b) to write down the inverse of f.

74 marks

Show that the function f, defined by f open parentheses x close parentheses equals ln open parentheses fraction numerator e to the power of x plus 1 over denominator e to the power of x minus 1 end fraction close parentheses,  is a self-inverse function.

1a2 marks

A function is defined by f left parenthesis x right parenthesis equals straight e to the power of x squared plus b x plus 4 end exponent. The graph of f has an axis of symmetry of x equals 2.

Find the value of b.

1b1 mark

Find the range of f.

1c
Sme Calculator
3 marks

Another function is defined by g left parenthesis x right parenthesis equals negative fraction numerator open parentheses x squared minus 25 close parentheses over denominator 5 end fraction. The graph of f and g intersect at points A and B.

Find the equation of the line passing through points A and B. Give your answer in the form y equals m x plus c.

1d
Sme Calculator
2 marks

Find the distance of the line AB.

2a
Sme Calculator
2 marks

Consider the function f left parenthesis x right parenthesis equals 5 minus log invisible function application left parenthesis 6 minus 4 x right parenthesis. The line l subscript 1 intersects the graph of f at point Aopen parentheses negative 1 comma space y close parentheses  and Bopen parentheses x comma space 5 close parentheses .

Find the value of x spaceand y.

2b2 marks

Find the equation of l subscript 1. Give your answer in the form y equals m x plus c, where m and c spaceare fractions.

3a4 marks

The function f is a quadratic in the form f left parenthesis x right parenthesis equals a x squared plus b x minus 2, for negative 10 less or equal than x less or equal than 10 .

The graph of f has x-intercepts open parentheses fraction numerator 1 plus square root of 5 over denominator 2 end fraction comma 0 close parentheses and open parentheses fraction numerator 1 minus square root of 5 over denominator 2 end fraction comma 0 close parentheses.  

Find the values of a and b.

3b
Sme Calculator
2 marks

Another function can be defined by g left parenthesis x right parenthesis equals 6 open parentheses 0.8 close parentheses to the power of negative x end exponent minus 1 , for negative 10 less or equal than x less or equal than 10.

The graph of f and g intersect at points straight A and straight B.

Find the coordinates of straight A and B.

3c
Sme Calculator
2 marks

Solve the inequality f left parenthesis x right parenthesis less than g left parenthesis x right parenthesis.

4a
Sme Calculator
2 marks

Write down the domain and range of the logarithmic function y equals log subscript b x comma where b greater than 0 and b not equal to 1

4b6 marks

Given that log subscript open parentheses y squared close parentheses end subscript x equals 16 log subscript x left parenthesis y squared right parenthesis, find all the expressions for x in terms of y.

5a
Sme Calculator
3 marks

Let f left parenthesis x right parenthesis equals 2 x to the power of 4 minus 2 x cubed minus 4 x squared plus x plus 1 comma where x element of straight real numbers.

Solve the inequality f left parenthesis x right parenthesis less than 0.

5b
Sme Calculator
3 marks

For the graph of f, find the coordinates of the

(i) local maximum point.

(ii) local minimum points.

5c3 marks

Write down the possible domains of f for which f has an inverse and explain why the domain must be restricted.

6a
Sme Calculator
3 marks

Consider the function f defined by f left parenthesis x right parenthesis equals ln left parenthesis x squared minus 64 right parenthesis comma for x greater than 8.

The following diagram shows part of the graph of f which crosses the x-axis at point A, with coordinates (a, 0).  The line L is the tangent to the graph of  f  at the point B.

ib6a-ai-sl-2-4-ib-maths-veryhard

Find the exact value of a.

6b
Sme Calculator
4 marks

The x-coordinate of B is 10. The y-coordinate of B can be written in the form space p ln q, where p comma q element of straight integer numbers.

Find the value of p spaceand the value of q.

6c5 marks

The gradient of L is 5 over 9 . The equation of L can be written in the form y equals 5 over 9 x minus u left parenthesis v minus ln invisible function application w right parenthesis.

Find the values of u comma v and w.

7a
Sme Calculator
3 marks

A population of endangered birds, P, can be modelled by the equation

P subscript t equals P subscript 0 straight e to the power of k t end exponent

where P subscript 0 is the initial population and t is measured in years.

After three years, it is estimated that  P subscript 3 over P subscript 0equals 0.87 .

Find the value of k and interpret its meaning.

7b
Sme Calculator
5 marks

Find the least number of whole years for which P subscript t over P subscript 0less than 0.45.

8a2 marks

The intensity of light, I, is assumed to be 100% at the surface of the ocean and decreases with depth, d. The intensity can be estimated by the function

I left parenthesis d right parenthesis equals k open parentheses 1.08 close parentheses to the power of negative d end exponent

where I is expressed as a percentage, d is the depth below the surface in metres, and k is a constant.

Calculate the value of k.

8b2 marks

State the domain and range of I.

8c
Sme Calculator
2 marks

Calculate the intensity of light 6.2 m below the surface.