Prime Factor Decomposition (AQA GCSE Maths): Revision Note

Exam code: 8300

Prime factor decomposition

What are prime factors?

  • A factor of a given number is a value that divides the given number exactly, with no remainder

    • e.g. 6 is a factor of 18

  • prime number is a number which has exactly two factors; itself and 1

    • e.g. 5 is a prime number, as its only factors are 5 and 1

    • You should remember the first few prime numbers:

      • 2, 3, 5, 7, 11, 13, 17, 19, …

  • The prime factors of a number are therefore all the primes which multiply to give that number

    • e.g. The prime factors of 30 are 2, 3, and 5

      • 2 × 3 × 5 = 30

How do I find prime factors?

  • Use a factor tree to find prime factors

    • Split the number up into a pair of factors

    • Then split each of those factors up into another pair

    • Continue splitting up factors along each "branch" until you get to a prime number

      • These can not be split into anything other than 1 and themselves

      • It helps to circle the prime numbers at the end of the branches

  • One way to split each number up is by dividing it by the smallest possible prime number

    • This gives a prime factor at each stage

Prime factors of 360 in a factor tree
  • Another way to split each number up by dividing by easy numbers such as 10

    • These do not need to be prime numbers

    • You will need to split any non-prime numbers into pairs of factors

    • These trees can get messy

Factor tree diagram for 360: splits into 10 and 36; 10 into 2 and 5; 36 into two 6s; each 6 into 2 and 3.
  • The number will always end up with the same numbers circled no matter which pairs of numbers you choose

  • A number can be uniquely written as a product of prime factors

    • Write the prime factors as a multiplication, in ascending order

      • 360 = 2 × 2 × 2 × 3 × 3 × 5

    • This can then be written more concisely using powers

      • 360 = 23 × 32 × 5

  • A question asking you to do this will usually be phrased as "Express … as the product of its prime factors"

Worked Example

Write 432 as the product of its prime factors.

Answer:

Create a factor tree
Start with 432 and choose any two numbers that multiply together to make 432

  • 2 and 216 is an obvious pair

Continue to split non-prime numbers into pairs of factors

Prime factor tree of 432 showing step-by-step factorisation into 2 and 3, descending from 432 to 2, 2, 2, 2, 3, 3, 3.

The answer will be the same regardless of the factors chosen in the first step

Write the prime numbers out as a product

432 equals space 2 space cross times space 2 space cross times space 2 space cross times space 2 space cross times space 3 space cross times space 3 space cross times space 3

Any repeated prime factors can be written as a power

432 space equals space bold 2 to the power of bold 4 bold space bold cross times bold space bold 3 to the power of bold 3 bold space 

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Jamie Wood

Author: Jamie Wood

Expertise: Maths Content Creator

Jamie graduated in 2014 from the University of Bristol with a degree in Electronic and Communications Engineering. He has worked as a teacher for 8 years, in secondary schools and in further education; teaching GCSE and A Level. He is passionate about helping students fulfil their potential through easy-to-use resources and high-quality questions and solutions.

Dan Finlay

Reviewer: Dan Finlay

Expertise: Maths Subject Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.