Techniques & Applications of Integration (DP IB Analysis & Approaches (AA): HL): Exam Questions

4 hours30 questions
1a1 mark

Find the indefinite integral

integral sin space x space space straight d x

1b
Sme Calculator
3 marks

Find the exact value for

integral subscript 1 superscript 4 1 over x space straight d x

1c2 marks

Find the indefinite integral for

y equals integral 7 e to the power of 7 x end exponent space d x

2a2 marks

Integrate

integral cos space 2 x space space straight d x

2b
Sme Calculator
4 marks

Find the definite integral

integral subscript 0 superscript 2 open parentheses 3 x minus 1 close parentheses cubed space straight d x

2c2 marks

Find an expression for y given that

fraction numerator d y over denominator d x end fraction equals e to the power of 5 x end exponent

3
Sme Calculator
7 marks

Using a suitable substitution, show that

integral subscript 1 superscript 2 fraction numerator x over denominator x plus 4 end fraction space straight d x equals 1 plus 4 ln 5 over 6

4
Sme Calculator
6 marks

Given that

cos space 2 theta space identical to 2 cos to the power of 2 space end exponent theta space minus 1

use calculus to find the exact value of

integral subscript straight pi over 4 end subscript superscript straight pi over 2 end superscript cos squared theta space d theta

5a2 marks

Given that  straight f open parentheses x close parentheses equals 2 x cubed plus 4 x comma  find  straight f apostrophe open parentheses x close parentheses.

5b4 marks

Hence, or otherwise, find

integral fraction numerator 3 x squared plus 2 over denominator 2 x cubed plus 4 x end fraction space straight d x

6a2 marks

The diagram below shows a sketch of the curves with equations

space space y equals x squared minus 3 x plus 4 and y equals 4 minus x squared plus 2 x

q11-8-2-further-integration-medium-a-level-maths-pure-screenshot

Find the x-coordinates of the intersections of the two graphs.

6b2 marks

Show that the area of the shaded region labelled R is given by

integral subscript 0 superscript 5 over 2 end superscript open parentheses 5 x minus 2 x squared close parentheses space d x

6c
Sme Calculator
2 marks

Use calculus to find the area of the shaded region labelled R.

7a3 marks

The diagram below shows the graphs of the line space y equals 6 minus x spaceand  the curve space y equals x squared.

GztGkQjs_q10-8-1-integration-easy-a-level-maths-pure-screenshot

Work out the x-coordinates of the points labelled P, Q and R.

7b
Sme Calculator
4 marks

Work out the area of the shaded region.

8a2 marks

Consider the function h left parenthesis x right parenthesis such that

integral subscript 1 superscript 5 h left parenthesis x right parenthesis straight d x equals 2.

Find

integral subscript 5 superscript 1 h open parentheses x close parentheses space straight d x

8b
Sme Calculator
3 marks

Find

integral subscript 1 superscript 5 fraction numerator h open parentheses x close parentheses plus 1 over denominator 2 end fraction d x

8c
Sme Calculator
3 marks

Find

integral subscript 1 superscript 5 open parentheses h open parentheses x close parentheses plus 2 x close parentheses straight d x

9a3 marks

Consider the function f left parenthesis x right parenthesis equals ln left parenthesis 2 x squared plus 1 right parenthesis .

Find f to the power of apostrophe left parenthesis x right parenthesis.

9b3 marks

Hence, find

integral fraction numerator x over denominator 2 x squared plus 1 end fraction straight d x

105 marks

Let  f to the power of apostrophe left parenthesis x right parenthesis equals x to the power of 2 space end exponent cos space left parenthesis x cubed plus 1 right parenthesis.

Find f left parenthesis x right parenthesis space spacegiven that  f left parenthesis negative 1 right parenthesis equals 1.

 

1a
Sme Calculator
3 marks

Consider the function f  defined by space f open parentheses x close parentheses equals open parentheses x squared minus x minus 2 close parentheses open parentheses x minus 5 close parentheses, negative 2 less or equal than x less or equal than 4.

Find the coordinates of the points where the graph of space y equals f open parentheses x close parentheses space space intercepts the x-axis.

1b
Sme Calculator
4 marks

Hence calculate the area of the region enclosed by the graph of space y equals f open parentheses x space close parentheses spaceand the x-axis.

2a2 marks

Find the indefinite integral for

integral cos space open parentheses x over 2 close parentheses space space straight d x

2b2 marks

Find the indefinite integral for

integral 5 e to the power of 3 x end exponent space straight d x

2c2 marks

Find an expression for y given that

fraction numerator straight d y over denominator straight d x end fraction equals sin space open parentheses x minus straight pi over 3 close parentheses

3a
Sme Calculator
3 marks

Find the exact value of

integral subscript 1 superscript 5 fraction numerator 3 over denominator 2 x end fraction d x

3b
Sme Calculator
3 marks

Find the definite integral

integral subscript 0 superscript straight pi over 8 end superscript 3 sin space 4 x space d x

3c3 marks

Find an expression for y given that

fraction numerator straight d y over denominator straight d x end fraction equals e to the power of 2 x plus 3 end exponent plus 2

and also that space y equals 5  when  x equals negative 3 over 2 .

4a6 marks

Consider the function space f open parentheses x close parentheses equals ln left parenthesis 3 x squared minus 12 x plus 1 right parenthesis.

(i) Find f to the power of apostrophe open parentheses x close parentheses.

(ii) Hence, find

integral fraction numerator 16 minus 8 x over denominator 3 x squared minus 12 x plus 1 end fraction space straight d x

4b5 marks

Let space g apostrophe open parentheses x close parentheses equals open parentheses x squared minus 5 x plus 6 close parentheses sin open parentheses space 2 x cubed minus 15 x squared plus 36 x minus straight pi over 3 close parentheses

Find  g left parenthesis x right parenthesis space given that  g open parentheses 0 close parentheses equals 1.

5
Sme Calculator
7 marks

Use a suitable substitution to show that

integral subscript 2 superscript 5 fraction numerator x over denominator 2 x minus 3 end fraction space straight d x equals 3 over 2 plus 3 over 4 ln space 7 space

6
Sme Calculator
7 marks

Using a suitable trigonometric identity, find the exact value of

integral subscript straight pi superscript 3 straight pi end superscript sin squared open parentheses theta over 3 close parentheses d theta

7
Sme Calculator
6 marks

Work out the value of the following definite integral

integral subscript 2 superscript 5 fraction numerator x plus 1 over denominator x squared plus 2 x minus 5 end fraction space straight d x

giving your answer as an exact value.

8a4 marks

The diagram below shows a sketch of part of the curves with equations space y equals x squared plus 8 x minus 1  and  y equals 4 x squared minus 5 x plus 3.

q8-5-4-further-integration-hard-ib-aa-sl

The shaded region in the diagram is the area bounded by the two curves.

Show that the area of the shaded region is given by

integral subscript 1 third end subscript superscript 4 open parentheses 13 x minus 3 x squared minus 4 close parentheses space straight d x

8b
Sme Calculator
2 marks

Hence find the area of the shaded region.

9a
Sme Calculator
5 marks

The diagram below shows a sketch of part of the curves with equations  

y equals 2 x cubed minus 21 x squared plus 66 x minus 47 space    and    space y equals negative 3 x cubed plus 26 x squared minus 65 x plus 58

q9-5-4-further-integration-hard-ib-aa-sl

The shaded region in the diagram is the area bounded by the two curves.

Work out the area of the region bounded by the positive x-axis, the negative y-axis and the graph of  y equals 2 x cubed minus 21 x squared plus 66 x minus 47

9b
Sme Calculator
7 marks

Work out the area of the shaded region.

10a5 marks

Consider the function space h left parenthesis x right parenthesis spacesuch that

integral subscript 0 superscript 7 h left parenthesis x right parenthesis straight d x equals 19 space      and     space space integral subscript 4 superscript 7 h left parenthesis x right parenthesis straight d x equals 12

(i) integral subscript 0 superscript 4 h open parentheses x close parentheses space straight d x

(ii) integral subscript 7 superscript 4 h open parentheses x close parentheses space straight d x

(iii) integral subscript 3 superscript 3 h open parentheses x close parentheses space straight d x

10b
Sme Calculator
3 marks

Find

integral subscript 4 superscript 7 fraction numerator 4 minus h open parentheses x close parentheses over denominator 5 end fraction d x

10c
Sme Calculator
3 marks

Find

integral subscript 0 superscript 7 open parentheses 2 h open parentheses x close parentheses plus fraction numerator 3 x squared over denominator 7 end fraction close parentheses d x

1
Sme Calculator
8 marks

Consider the function defined byspace space f open parentheses x close parentheses equals open parentheses x squared minus 3 x plus 2 close parentheses open parentheses x plus 2 close parentheses comma space space x element of straight real numbers.

Calculate the area of the region enclosed by the graph of  space y equals f open parentheses x close parentheses space spaceand the x-axis.

2a2 marks

Find the indefinite integral for

integral sin open parentheses fraction numerator square root of 3 over denominator 2 end fraction x close parentheses d x

2b2 marks

Find the indefinite integral for

integral 7 over e to the power of 4 x minus 9 end exponent d x

2c2 marks

Find an expression for y given that

fraction numerator d y over denominator d x end fraction equals cos open parentheses 2 open parentheses straight pi over 8 minus x close parentheses close parentheses

3a
Sme Calculator
3 marks

Find the exact value of

integral subscript negative 4 end subscript superscript negative 1 end superscript minus fraction numerator 7 over denominator 5 x end fraction d x

3b
Sme Calculator
3 marks

Find the definite integral

integral subscript negative straight pi over 3 end subscript superscript 0 sin open parentheses straight pi over 3 minus 2 x close parentheses d x

3c3 marks

Find an expression for y given that

fraction numerator d y over denominator d x end fraction equals x e to the power of x squared minus 2 end exponent

and also that  y equals 3 space when  x equals negative square root of 2 space.

4
Sme Calculator
7 marks

Use a suitable substitution to show that

integral subscript 3 superscript 4 fraction numerator x cubed over denominator 2 open parentheses x plus 2 close parentheses open parentheses x minus 2 close parentheses space end fraction straight d x equals 7 over 4 plus ln space open parentheses fraction numerator 12 over denominator 5 space end fraction close parentheses

5a
Sme Calculator
7 marks

Let I be the definite integral defined by

I equals integral subscript a over k end subscript superscript b over k end superscript sin squared open parentheses k theta close parentheses space d theta

where a, b and k  are real constants such that  space a less or equal than b space spaceand space k greater than 0.

Show that

I equals fraction numerator 1 over denominator 2 k end fraction open square brackets open parentheses b minus a close parentheses minus 1 half open parentheses sin space open parentheses 2 b close parentheses space minus sin space open parentheses 2 a close parentheses close parentheses close square brackets

5b
Sme Calculator
4 marks

Hence find the exact values of 

(i) integral subscript straight pi over 12 end subscript superscript straight pi over 3 end superscript space sin squared open parentheses 2 theta close parentheses space straight d theta

(ii) integral subscript fraction numerator 5 straight pi over denominator 2 end fraction end subscript superscript 10 straight pi end superscript sin squared open parentheses theta over 5 close parentheses space d theta

6a2 marks

Explain why

fraction numerator 1 over denominator tan space theta end fraction equals fraction numerator cos space theta over denominator sin space theta end fraction

6b
Sme Calculator
7 marks

Use the result from part (a) to show that

integral subscript 0 superscript square root of straight pi over 6 end root end superscript fraction numerator x over denominator tan space open parentheses x squared minus fraction numerator 2 pi over denominator 3 end fraction close parentheses end fraction space space straight d x equals negative 1 half ln space open parentheses fraction numerator square root of 3 over denominator 2 end fraction close parentheses

6c1 mark

Explain why the value of the integral found in part (b) is a positive number.

7a
Sme Calculator
6 marks

The diagram below shows a sketch of part of the curves with equations  y equals x squared minus 6 x plus 56 over 9  and  y equals negative 2 x squared plus 14 x minus 196 over 9.

q7-5-4-further-integration-veryhard-ib-aa-sl

The shaded region in the diagram is the area bounded by the two curves.

By first showing that the area of the shaded region is given by

integral subscript 2 superscript 14 over 3 end superscript open parentheses 20 x minus 3 x squared minus 28 close parentheses space straight d x

calculate the exact area of the shaded region

7b2 marks

Explain why your answer to part (a) is not affected by the fact that the shaded region is partially above and partially below the x-axis.

8
Sme Calculator
7 marks

The diagram shows a sketch of part of the curves with equations  y equals 2 x cubed plus 2 x squared minus 9 x minus 24 space and  y equals a x cubed plus b x squared plus c x plus d comma  where a, b, c and d are constants with  a not equal to 0.

q8a-5-4-further-integration-veryhard-ib-aa-sl

The x-coordinates of the points of intersection of the two curves are p, q and r, where  space p less than q less than r.  Region S is the region enclosed by the two curves between  x equals p  and space x equals q,  while region T is the region enclosed by the two curves between  x equals q  and  x equals r.

The diagram below shows a sketch of part of the curve with equation  y equals 4 x cubed plus 9 x squared minus 16 x minus 21.

7_LCsAWI_q9-5-4-further-integration-hard-ib-aa-sl

The curve intersects the x-axis at the pointsopen parentheses space p comma space 0 close parentheses comma space open parentheses q comma space 0 space close parentheses andspace open parentheses r comma space 0 close parentheses, and region U is the region enclosed by the curve and the x-axis between  x equals p  and space x equals q.

Given that the areas of regions S and U are equal, calculate the total area enclosed by the two curves in the first diagram.  Be sure to provide a suitable justification for your answer.

9a5 marks

Consider the function h open parentheses x close parentheses such that

integral subscript 6 superscript negative 3 end superscript h open parentheses x close parentheses space straight d x equals 14 and integral subscript 2 superscript 5 h open parentheses x close parentheses space straight d x equals 14

Find

(i) space integral subscript 5 superscript 2 h open parentheses x close parentheses space straight d x

(ii) integral subscript negative 2 end subscript superscript negative 2 end superscript h open parentheses x close parentheses space straight d x

(iii) integral subscript negative 3 end subscript superscript 2 h open parentheses x close parentheses space straight d x plus integral subscript 6 superscript 5 h open parentheses x close parentheses space straight d x

9b
Sme Calculator
3 marks

Find

integral subscript 6 superscript negative 3 end superscript fraction numerator 7 minus 3 h open parentheses x close parentheses over denominator 4 end fraction d x

9c4 marks

Given that space h open parentheses 2 close parentheses equals 3  and space h open parentheses 5 close parentheses equals 4,  find

integral subscript 2 superscript 5 h open parentheses x close parentheses open parentheses 4 h apostrophe open parentheses x close parentheses minus pi close parentheses space straight d x

10a2 marks

Show that  5 w cubed minus 21 w squared plus 16 equals open parentheses 5 w plus 4 close parentheses open parentheses w squared minus 5 w plus 4 close parentheses.

10b4 marks

A function f is defined by space f open parentheses x close parentheses equals negative 16 over x squared minus 5 x plus 21 comma space space x not equal to 0.

Let I be the definite integral defined by

I equals integral subscript 1 superscript a f open parentheses x space close parentheses straight d x

where  a greater than 1  is a constant.

Determine the value of I, giving your answer in terms of a.

10c
Sme Calculator
8 marks

Hence, or otherwise, determine the value of a which maximises the value of I, and calculate the value of I when a takes that value.