Magnitude of a Vector (Edexcel IGCSE Further Pure Maths): Revision Note
Exam code: 4PM1
Magnitude of a Vector
How do I find the magnitude of a vector?
The magnitude of a vector is its length (distance)
It is also called the modulus
The magnitude of
is written
The magnitude of a is written |a|
In component form, the magnitude is the hypotenuse of a right-angled triangle
Use Pythagoras' theorem to find it
The magnitude of
is
where

How do I find harder magnitudes?
The magnitude of a sum of vectors is not equal to the sum of the magnitudes
Work out a + b (or a - b) first, then find its magnitude
You may need to form an equation
For example, |a| = 5 where a = 4i + xj
This solves to give
How do I find the magnitude of a displacement vector?
You can use coordinate geometry to find magnitudes of displacement vectors from A to B
From the position vectors of A and B you know their coordinates
If
, then point A has coordinates
If
, then point B has coordinates
The distance between two points is given by
So
For example, if points A and B have position vectors
and
respectively
then
Alternatively, you could find
by
first using
to find
in vector form
and then calculating its magnitude directly
See the Worked Example below
Examiner Tips and Tricks
When magnitudes involve algebra, it helps to square both sides to get rid of the square root sign!
Worked Example
,
and
are fixed points, where
and
.
Given that and
, find the value of
.
Use
Simplify and collect components
Use
Expand and simplify inside the square root
You cannot just take the square root of the individual terms!
Substitute in from the question
Square both sides and form a quadratic in
Factorise and solve
You are given that in the question
This means is the only valid answer
Unit Vectors
What is a unit vector?
A unit vector is a vector of length 1
Any vector, a, can be made a unit vector by dividing it by its magnitude,
This will result in a vector of length 1
It still points in the same direction as a
For example, to make 3i – 4j a unit vector
find its magnitude,
divide by its magnitude
Each component is divided by the magnitude
Examiner Tips and Tricks
Read vector questions carefully
Some may want you to give your final answer as a unit vector!
Worked Example
The position vector of a point, , relative to the origin,
, is given by
Find a unit vector in the direction of , giving your answer in exact form.
To find a unit vector, divide the vector by its magnitude
Find and simplify the magnitude, , using
Divide each component in by
The unit vector is
would be accepted
Decimals would not be accepted
Rationalised denominators would be accepted,
You've read 1 of your 5 free revision notes this week
Unlock more, it's free!
Did this page help you?