Functions Toolkit (DP IB Analysis & Approaches (AA): HL): Exam Questions

5 hours39 questions
1a2 marks

The functions f and g are defined such that f left parenthesis x right parenthesis equals 4 x minus 10 and g left parenthesis x right parenthesis equals fraction numerator x space plus space 8 over denominator 2 end fraction.

Show that left parenthesis g space ring operator space f right parenthesis left parenthesis x right parenthesis equals 2 x minus 1.

1b2 marks

Given that left parenthesis g ring operator f right parenthesis left parenthesis a right parenthesis equals 27, find the value of a

1c2 marks

Show that left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis equals 2 x plus 6.

1d2 marks

Given that left parenthesis f ring operator g right parenthesis left parenthesis b right parenthesis equals 44, find the value of b

2a
Sme Calculator
1 mark

The functions f left parenthesis x right parenthesis and g left parenthesis x right parenthesis are defined as follows

f left parenthesis x right parenthesis equals x squared space space space space space space space space space space space x element of straight real numbers

g left parenthesis x right parenthesis equals 4 x minus 3 space space space space space space space space space space space x element of straight real numbers

Write down the range of f left parenthesis x right parenthesis.

2b4 marks

Find    

(i)      left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis           

(ii)      left parenthesis g ring operator f right parenthesis left parenthesis x right parenthesis                   

2c
Sme Calculator
2 marks

Solve the equation f left parenthesis x right parenthesis equals g left parenthesis x right parenthesis.

3a3 marks

The graph of y equals f left parenthesis x right parenthesis is shown below.

2-8-m-q5-edexcel-al-maths-pure

(i)     Use the graph to write down the domain and range of f left parenthesis x right parenthesis

(ii)    Given that the point (1, 1) lies on the dotted line, write down the equation of the line.

3b2 marks

On the diagram above sketch the graph of y equals f to the power of negative 1 end exponent left parenthesis x right parenthesis

4a2 marks

The function f left parenthesis x right parenthesis spaceis defined as

              f left parenthesis x right parenthesis equals fraction numerator x squared plus 1 over denominator x squared end fraction space space space space space space space space space space space space space space space space space space space x element of R comma space x not equal to 0

Show that f left parenthesis x right parenthesis spacecan be written in the form

f left parenthesis x right parenthesis equals 1 plus 1 over x squared

4b2 marks

Explain why the inverse of f left parenthesis x right parenthesis spacedoes not exist and suggest an adaption to its domain so the inverse does exist.

4c4 marks

The domain of f left parenthesis x right parenthesis spaceis changed to x greater than 0. Find an expression for f to the power of negative 1 end exponent left parenthesis x right parenthesis  and state its domain and range.

5a3 marks

The functions  f left parenthesis x right parenthesis  and  g left parenthesis x right parenthesis  are defined as follows

f left parenthesis x right parenthesis equals 1 half space open parentheses 4 x minus 3 close parentheses space space space space space space space space x element of R

g left parenthesis x right parenthesis equals 0.5 x plus 0.75 space space space space space space space space space x element of R

Find

(i) left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis

(ii) left parenthesis g ring operator f right parenthesis left parenthesis x right parenthesis

5b3 marks

Write down f to the power of negative 1 end exponent left parenthesis x right parenthesis and state its domain and range.

6a
Sme Calculator
1 mark

A function is defined by f left parenthesis x right parenthesis equals 54 x minus 13 comma space space space space minus 2 less than x less than 20.

Find the value of f open parentheses 5 over 2 close parentheses.

6b
Sme Calculator
2 marks

Write down the range of f left parenthesis x right parenthesis.

6c2 marks

Find the inverse function f to the power of negative 1 end exponent left parenthesis x right parenthesis.

6d
Sme Calculator
1 mark

Write down the range of the inverse function.

7a
Sme Calculator
2 marks

Consider the function f left parenthesis x right parenthesis equals negative 6 x minus 3. The domain of f left parenthesis x right parenthesis is negative 5 less or equal than x less or equal than 3.

Find

(i) f left parenthesis 2 right parenthesis

(ii) x space when space f left parenthesis x right parenthesis equals 15

7b
Sme Calculator
3 marks

Find the range of f left parenthesis x right parenthesis.

7c3 marks

Write down the domain of the inverse function f to the power of negative 1 end exponent left parenthesis x right parenthesis.

8a
Sme Calculator
3 marks

Consider the function g left parenthesis x right parenthesis equals space square root of left parenthesis 4 minus x right parenthesis end root.

Sketch the graph of the function g left parenthesis x right parenthesis, labelling the x spaceand y intercepts.

ib8a-ai-sl-2-3-ib-maths-medium
8b2 marks

Find

    (i)     straight g left parenthesis negative 5 right parenthesis

    (ii)    x  when  straight g left parenthesis x right parenthesis equals space 1 half .

8c2 marks

Find

          (i)      the maximum possible domain of the function straight g left parenthesis x right parenthesis

(ii)   the range of the function that corresponds to the domain found in part (c) (i).

9a
Sme Calculator
2 marks

The functions f and g are defined for x element of straight real numbers by f left parenthesis x right parenthesis equals 3 x squared plus 10 x plus 7 and   g left parenthesis x right parenthesis equals x plus d comma space where d element of R.

Find the range of f.

9b
Sme Calculator
4 marks

Given that left parenthesis g ring operator f right parenthesis left parenthesis x right parenthesis is always positive for all x determine the set of possible values for d

10a
Sme Calculator
2 marks

Let  f open parentheses x close parentheses equals fraction numerator 2 x minus 5 over denominator x plus 8 end fraction, where x not equal to a comma space x element of R.

Write down

(i) the value of a

(ii) the range of f.

10b
Sme Calculator
1 mark

For the graph of f, find the equations of all the asymptotes.

10c2 marks

Find f to the power of negative 1 end exponent open parentheses x close parentheses.

10d
Sme Calculator
2 marks

For the graph of f to the power of negative 1 end exponent, find the equation of

(i) the horizontal asymptote

(ii) the vertical asymptote.

11
Sme Calculator
5 marks

Determine, for each of the following functions, whether they are even, odd or neither:

(i) f left parenthesis x right parenthesis equals 1 over x squared plus 2

(ii) g left parenthesis x right parenthesis equals x cubed minus 3 x

(iii) h left parenthesis x right parenthesis equals x squared plus 2 x minus 5.

125 marks

Prove that the sum of two odd functions is also an odd function.

13a2 marks

Let f left parenthesis x right parenthesis equals pi squared over x , where x not equal to 0 comma space x element of R .

Show that f left parenthesis x right parenthesis spaceis a self-inverse function.

13b
Sme Calculator
1 mark

Let g left parenthesis x right parenthesis equals fraction numerator negative x minus 2 over denominator 5 x plus 1 end fraction, where x not equal to p comma space x element of R.

Find the value of p.

13c3 marks

Show that g left parenthesis x right parenthesis is a self-inverse function.

14a
Sme Calculator
2 marks

Consider the function f defined by f left parenthesis x right parenthesis equals 2 x cubed plus 3 x squared minus 36 x plus 7 comma space x element of R  .

Sketch the graph of f. Clearly label the points where the graph intersects the axes, along with any points that are local maxima or minima.

14b3 marks

Let the function g be defined by g left parenthesis x right parenthesis equals 2 x cubed plus 3 x squared minus 36 x plus 7 comma space x less or equal than p  .

Given g spacethat has an inverse:

(i) Find the largest possible value of p

(ii) Find the domain of for the value of g to the power of negative 1 end exponent  identified in part (b)(i)

(iii) Find the value of g to the power of negative 1 end exponent open parentheses 0 close parentheses .

14c3 marks

Let the function h be defined by h open parentheses x close parentheses equals 2 x cubed plus 3 x squared minus 36 x plus 7 comma space x greater or equal than q.

Given that h space has an inverse:

(i) Find the smallest possible value of q

(ii) Find the domain of h to the power of negative 1 end exponent  for the value of q   identified in part (c)(i)

(iii) Find the value of h to the power of negative 1 end exponent open parentheses 0 close parentheses .

1a3 marks

The functions f  and g  are defined such that  f left parenthesis x right parenthesis equals 2 x squared minus 4 x   and   g left parenthesis x right parenthesis equals fraction numerator 5 x space plus space 12 over denominator 2 end fraction.

Find left parenthesis g space ring operator space f right parenthesis left parenthesis x right parenthesis comma , giving your answer in the form  left parenthesis g ring operator f right parenthesis left parenthesis x right parenthesis equals m left parenthesis x minus h right parenthesis squared plus k  where m , h  and k  are constants to be found.

1b
Sme Calculator
1 mark

Hence, or otherwise, find the coordinates of the vertex of the graph of  y equals left parenthesis g space ring operator space f right parenthesis left parenthesis x right parenthesis.

1c3 marks

Find left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis ,  giving your answer in the form  left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis equals a x squared plus b x plus c   where a ,b  and c  are constants to be found.

1d
Sme Calculator
1 mark

Hence, or otherwise, find the coordinates of the y -intercept of the graph of  y equals left parenthesis f space ring operator space g right parenthesis left parenthesis x right parenthesis.

2a1 mark

Let  f left parenthesis x right parenthesis equals fraction numerator 5 minus x squared over denominator 3 end fraction  and g left parenthesis x right parenthesis equals 4 minus 3 over x  ,  where each function has the largest possible valid domain.

Write down the range of f

2b2 marks

Write down the domain and range of g.

2c3 marks

Find

          (i)      left parenthesis f space ring operator space g right parenthesis left parenthesis x right parenthesis                                

          (ii)      left parenthesis g space ring operator space f right parenthesis left parenthesis x right parenthesis.

2d
Sme Calculator
2 marks

Solve the equation left parenthesis f space ring operator space g right parenthesis left parenthesis x right parenthesis equals left parenthesis g space ring operator space f right parenthesis left parenthesis x right parenthesis..

3a
Sme Calculator
2 marks

The function f is defined by  f left parenthesis x right parenthesis equals cube root of 4 left parenthesis 1 minus x right parenthesis end root ,  for negative 1 less or equal than x less or equal than 17 .

Write down the range of f.

3b2 marks

Write down an expression for f to the power of negative 1 end exponent.

3c
Sme Calculator
2 marks

Write down the domain and range of f to the power of negative 1 end exponent

4a4 marks

The perimeter, P, and area, A, of a given square can be expressed by straight P equals 4 x and straight A equals x to the power of italic 2 respectively, where x is the length of the side of the square.

Write down an expression for:

(i) P in terms of A, P open parentheses A close parentheses

(ii) A in terms of P, A left parenthesis P right parenthesis.

4b2 marks

straight P to the power of negative 1 end exponent left parenthesis 40 right parenthesis equals straight A left parenthesis k right parenthesis

Find the value of k spaceand straight A open parentheses straight k close parentheses.

5a1 mark

The values of two functions, f and g, for certain values of x are given in the following table:

x

negative 2

0

3

f left parenthesis x right parenthesis

negative 12

negative 4

8

 g left parenthesis x right parenthesis

0

negative 12

30

Find the value of f to the power of negative 1 end exponent open parentheses 8 close parentheses.

5b2 marks

Find the value of left parenthesis f ring operator g right parenthesis left parenthesis negative 2 right parenthesis.

5c2 marks

Given that f left parenthesis x right parenthesis is a linear function, find f left parenthesis x right parenthesis.

6a
Sme Calculator
3 marks

Let  f left parenthesis x right parenthesis equals square root of x minus 14 end root comma  for x greater or equal than 14.

Find f to the power of negative 1 end exponent left parenthesis 2 right parenthesis.

6b3 marks

Let g be a function such that g to the power of negative 1 end exponent exists for all real numbers.

Given that g left parenthesis 14 right parenthesis equals 3, find left parenthesis f ring operator g to the power of negative 1 end exponent right parenthesis right parenthesis left parenthesis 3 right parenthesis.

7a4 marks

Let the function f be defined by f left parenthesis x right parenthesis equals square root of 2 x squared minus 16 x plus 41 end root ,  where f has its largest possible valid domain.

Find the domain and range of f.

7b2 marks

(i)     Find the value(s) of x for which  f left parenthesis x right parenthesis equals square root of 11 .

(ii)    Use your answer to part (b)(i) to explain why the inverse function f to the power of negative 1 end exponent does not exist.

8a2 marks

Let f left parenthesis x right parenthesis equals x squared minus 9 and g left parenthesis x right parenthesis equals x squared minus 1, both for x greater or equal than 0.

Find

(i) f to the power of negative 1 end exponent left parenthesis x right parenthesis

(ii) g to the power of negative 1 end exponent left parenthesis x right parenthesis

8b2 marks

Find left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis in the form a x to the power of 4 plus b x squared plus c.

8c
Sme Calculator
3 marks

Solve the equation left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis equals 0.

9a2 marks

Express x squared plus 12 x plus 24 in the form a left parenthesis x plus b right parenthesis squared plus c, where a comma b comma c element of Z.

9b3 marks

Given that g left parenthesis x right parenthesis equals x plus 6 and left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis equals x squared plus 12 x plus 24, find f left parenthesis x right parenthesis.

10a2 marks

Write 2 x squared plus 8 x minus 3  in the form  a left parenthesis x plus h right parenthesis squared plus k.

10b
Sme Calculator
1 mark

Explain why the function f  defined by f left parenthesis x right parenthesis equals 2 x squared plus 8 x minus 3 comma   x element of straight real numbers,  does not have an inverse.

10c
Sme Calculator
6 marks

The function g defined by   g left parenthesis x right parenthesis equals 2 x squared plus 8 x minus 3 comma   x greater or equal than p  has an inverse.

  (i)      Write down the smallest possible value of p.

Given that p takes its smallest possible value:

   (ii)     Find the domain and range of g to the power of negative 1 end exponent.

   (iii)    Find the inverse function g to the power of negative 1 end exponent .

10d
Sme Calculator
3 marks

Solve left parenthesis g ring operator f right parenthesis left parenthesis x right parenthesis equals 21.

11a4 marks

Let f left parenthesis x right parenthesis be an even function and let g left parenthesis x right parenthesis be an odd function.  Both functions are defined for all real values of x.

Prove the following statements:

p left parenthesis x right parenthesis equals f left parenthesis x right parenthesis g left parenthesis x right parenthesis spaceis an odd function.

q left parenthesis x right parenthesis equals left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis spaceis an even function.

11b3 marks

Determine whether or not it is possible for the function r spacedefined by 

r left parenthesis x right parenthesis equals f left parenthesis x right parenthesis plus g left parenthesis x right parenthesis

to be even or odd, being sure to state clearly any conditions that apply.

126 marks

The function f is defined by  f left parenthesis x right parenthesis equals fraction numerator a x plus b over denominator c x plus d end fraction ,  where a,b c,  and d are real constants with  c not equal to 0 .

Given that f is a self-inverse function, find the value of a plus d.

1a3 marks

The functions f  and g  are defined such that  f left parenthesis x right parenthesis equals 9 x minus 3 x squared minus 3   and g left parenthesis x right parenthesis equals negative fraction numerator 66 plus 2 x over denominator 3 end fraction  , both for  x element of straight real numbers .

Find left parenthesis g space ring operator space f right parenthesis left parenthesis x right parenthesis , giving your answer in the form left parenthesis g space ring operator space f right parenthesis left parenthesis x right parenthesis equals a left parenthesis x minus p right parenthesis left parenthesis x minus q right parenthesis. .

1b
Sme Calculator
1 mark

Hence, or otherwise, find the x -intercepts of the graph of y equals left parenthesis g space ring operator space f right parenthesis left parenthesis x right parenthesis..

1c
Sme Calculator
6 marks

Let h left parenthesis x right parenthesis equals 1 minus 2 x.

Find the distance between the y-intercept of the graph of  space y equals space left parenthesis f ring operator h right parenthesis left parenthesis x right parenthesis  and the positive x-intercept of the graph of  y equals left parenthesis g space ring operator space f right parenthesis left parenthesis x right parenthesis. space spaceYour answer should be given as an exact value.

2a
Sme Calculator
4 marks

Let the function f be such that  f left parenthesis x right parenthesis equals square root of 5 x squared minus 11 x plus 6.05 end root .

Given that the inverse function f to the power of negative 1 end exponent exists, and that the domain of f is as large as possible,

suggest a domain for f spaceand write down the corresponding range.

2b
Sme Calculator
2 marks

Based on your answer to part (a), find f to the power of negative 1 end exponent open parentheses square root of 22.05 end root close parentheses.

3a
Sme Calculator
2 marks

Let f left parenthesis x right parenthesis equals square root of negative 3 x squared plus 8 x plus 16 end root .

Write down the coordinates of the y-intercept of the graph of y equals f left parenthesis x right parenthesis.

3b
Sme Calculator
6 marks

Given that f has the largest possible valid domain,

find the domain and range of f.

4a
Sme Calculator
2 marks

Let the function  be defined by f left parenthesis x right parenthesis equals open parentheses 2 x squared minus 5 x minus 12 close parentheses to the power of negative 1 half end exponent minus k  ,  where k is a constant and where f has the largest possible valid domain.

Find the domain of f.

4b1 mark

Given that  that limit as x rightwards arrow infinity of f left parenthesis x right parenthesis equals negative 7,  find the value of k.

4c
Sme Calculator
3 marks

Write down the equations of any vertical and/or horizontal asymptotes on the graph of y equals f left parenthesis x right parenthesis.

5a4 marks

The following diagram shows the graph of  y equals f left parenthesis x right parenthesis,  for a function f that has the domain negative 3 less or equal than x less or equal than 3.  Point A has coordinates  left parenthesis negative 3 comma 2.5 right parenthesis and point B has coordinates left parenthesis 3 comma negative 2.5 right parenthesis.  The x-intercept of the function is left parenthesis 2 comma 0 right parenthesis as shown.

ib5a-ai-sl-2-3-ib-maths-veryhard

f can be written as a piecewise function, where each of the two pieces is a linear function and where the domain of the first function is negative 3 less or equal than x less or equal than 2.

Write down f left parenthesis x right parenthesis as a piecewise function.

5b
Sme Calculator
3 marks

Sketch the graph of  y equals f to the power of negative 1 end exponent left parenthesis x right parenthesis on the same grid above.

6a2 marks

Consider the function h defined by h left parenthesis x right parenthesis equals negative 4 x squared plus 24 x plus 8  , x element of straight real numbers .

Rewrite h left parenthesis x right parenthesis in the form a left parenthesis x plus b right parenthesis squared plus c ,  where a comma b comma c element of straight integer numbers.

6b
Sme Calculator
3 marks

Given that  f left parenthesis x right parenthesis equals left parenthesis x minus 3 right parenthesis squared and that left parenthesis g ring operator f right parenthesis left parenthesis x right parenthesis equals h left parenthesis x right parenthesis ,  find g left parenthesis x right parenthesis.

7a4 marks

The functions f and g are defined such that  f left parenthesis x right parenthesis equals fraction numerator 3 minus 2 x over denominator 5 end fraction  and  g left parenthesis x right parenthesis equals 4 x minus 7,  both for   x element of straight real numbers  .

Giving your answers in the form y equals m x plus c,  find

(i) left parenthesis g ring operator f right parenthesis left parenthesis x right parenthesis

(ii) left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis

7b
Sme Calculator
2 marks

Describe a single transformation that would map the graph of y equals left parenthesis g ring operator f right parenthesis left parenthesis x right parenthesis  onto the graph of y equals left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis .

7c3 marks

Given that open parentheses g ring operator f close parentheses to the power of negative 1 end exponent left parenthesis p right parenthesis equals 2,  find the value of p.

8a2 marks

Let the functions f and g be defined by f left parenthesis x right parenthesis equals 9 over 4 x squared minus 1   and  g left parenthesis x right parenthesis equals x squared minus 2,  both for x greater or equal than 0  .

Find

(i) f to the power of negative 1 end exponent left parenthesis x right parenthesis

(ii) g to the power of negative 1 end exponent left parenthesis x right parenthesis

8b2 marks

Find left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis in the form a x to the power of 4 plus b x squared plus c.

8c
Sme Calculator
3 marks

Solve the equation left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis equals 0.

9a2 marks

A rectangle has length l equals 4 x and width w equals x.

Find an expression for

(i) the perimeter of the rectangle, P, in terms of x.

(ii) the area of the rectangle, A, in terms of x.

9b2 marks

Show that P left parenthesis A right parenthesis equals 5 square root of A.

9c
Sme Calculator
3 marks

The graph of the function P, for 0 less or equal than A less or equal than 4 , is shown below.

ib8c-ai-sl-2-3-ib-maths-veryhard

On the grid above, draw the graph of the inverse function P to the power of negative 1 end exponent

10a5 marks

Consider the function f defined by  f left parenthesis x right parenthesis equals x squared minus 6 x plus 10 comma   x less or equal than p ,  where p is the largest value such that f has an inverse.

  (i)     Find the value of p .

  (ii)    On the same set of axes, sketch the graphs of f and f to the power of negative 1 end exponent.

  (iii)    Write down the domain and range of f to the power of negative 1 end exponent.

10b3 marks

Find the inverse function f to the power of negative 1 end exponent .

10c4 marks

Let the function g  be defined by  g left parenthesis x right parenthesis equals x squared minus 6 x plus 10 comma   x element of straight real numbers .

  (i)     Solve left parenthesis g ring operator f right parenthesis left parenthesis x right parenthesis equals 2 .

  (ii)    Solve left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis equals 2..

11a3 marks

Consider the function  f left parenthesis x right parenthesis equals a x to the power of 4 plus b x cubed plus c x squared plus d x plus e where  a comma b comma c comma d comma e element of straight real numbers .

Show that:

(i) if f space is even then b equals d equals 0.

(ii) if f space is odd then a equals c equals e equals 0.

11b5 marks

Consider the function g  defined by   g left parenthesis x right parenthesis equals left parenthesis 3 x plus p right parenthesis left parenthesis x minus 2 right parenthesis left parenthesis q x plus 1 right parenthesis left parenthesis 2 x plus 3 right parenthesis  where p  and q  are real constants.

Find the possible values of p  and q in the case where g is an even function.

11c4 marks

Use proof by contradiction to show that g  can never be an odd function.

12a4 marks

Consider the function f defined by f left parenthesis x right parenthesis equals fraction numerator 2 x minus 5 over denominator 3 x plus k end fraction comma   x element of R comma   x not equal to negative k over 3.

In the case where f  is self-inverse, find the value of k.

12b
Sme Calculator
5 marks

In the case when the graphs of f and f to the power of negative 1 end exponent intersect at exactly one point, find the possible values of k.

13a1 mark

A part of the graph of the function f left parenthesis x right parenthesis equals 2 x cubed minus 3 x squared minus 12 x plus 8 comma   x element of straight real numbers is shown below.  

ib13a-ai-sl-2-3-ib-maths-veryhard

Explain why f  does not have an inverse.

13b
Sme Calculator
6 marks

The domain of f is now restricted to   a less or equal than x less or equal than b  where   a less than 0  and  b greater than 0. a and b are chosen so that f has an inverse and the interval left square bracket a comma b right square bracket is as large as possible. 

Find the domain and range of f to the power of negative 1 end exponent